
DECEMBER 1981 Vol.4 NO. 2

a quarterly
bulletin

of the IEEE

computer society
technical

committee

5atabase
Engineering
Contents

Letter from the EditOr 1

A Survey and Taxonomy of Database Machines 3

SW. Song

The Laboratory for Database Systems Research at

the Ohio State University 14

D. K. Hsiao

Database Machine Activities at The University of

Wisconsin 20

H. Boral and D.J. DeWitt

The Intelligent Database Machine 28

M. Ubell

A Methodology for the Determination of Statistical

Database Machine Performance Requirements 31

P. Hawthorn

The NON-VON Database Machine: A Brief

Overview 41

D.E. Shaw, S.J. Stolof, H. Ibrahim, B. Hillyer,
G. Wiederhold, and J.A. Andrews

The System Architecture of a Database Machine

(DBM) 53

S.B. Vao, F. Tong, and Y.-Z. Sheng

Well-Connected Relation Computer 63

S.K. Arora and SR. Oumpala

Chairperson, Technical Committee

on Database Engineering

Prof. Jane Liu

Digital Computer Laboratory

University of Illinois

Urbana, III. 61801

(217) 333-0135

Editor-In-Chief,
Database Engineering

Dr. Won Kim

IBM Research

K55-282

5600 Cottle Road

San Jose, Calif. 95193

(408) 256-1 507

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on

Database Engineering. Its scope of interest includes: data

structures and models, access strategies, access control

techniques, database architecture, database machines,

intelligent front ends, mass storage for very large data
bases, distributed database systems and techniques,
database software design and implementation, database

utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent

to the Editor. All letters tothe Editor will be considered for

publication unless accompanied by a request to the con

trary. Technical papers are unrefereed.

Associate Editors,
Database Engineering

Prof. Don Batory
Dept. of Computer and

Information Sciences

University of Florida

Gainesville, Florida 32611

(904) 392-5241

Prof. Alan Hevrier

College of Business and Management

University of Maryland

College Park, Maryland 20742

(301) 454-6258

Dr. David Reiner

Sperry Research Center

100 North Road

Sud bury, Mass. 01776

(617) 369-4000 x353

Prof. Randy Katz

Dept. of Computer Science

University at Wisconsin

Madison, Wisconsin 53706

(608r262-0664

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or

organizations with which the author may be affiliated.

Membership in Database Engineering Technical Commit

tee is open to IEEE Computer Society members, student

members, and associate members. (Application form in

this issue.)

Letter from the Editor

This special issue of Database Engineering is intended to report on the status

of various on-going projects in the area of database machines and to serve as a

forum for presenting some initial results from recently started research

projects. S.W. Song surveys existing database machine designs under an inter

esting taxonomy he proposes. David Hsiao describes research programs in

multi-mini database management and database machine architecture at the Ohio

State University. The results obtained from the DIRECT prototyping efforts at

the University of Wisconsin at Madison are summarized in a paper by Haran Boral

and David DeWitt. They also indicate proposed research activities on database

machines at Wisconsin.

Michael Ubell shows the hardware/software architecture of the IDN-500 currently
being marketed by Britton-Lee, Inc. He also indicates design decisions that

went into architecting the system, and gives concrete cost/performance figures
for the system. Paula Hawthorn describes a proposed methodology for determining
the cost/performance requirements for a database machine architecture to sup

port applications that access a large volume of data. David Shaw, et al., pre

sents an overview of the NON-VON machine currently being constructed at the

Columbia University. The architecture of a backend database sysem being studied

at the University of Maryland is described in a working paper by S. Bing Yao, et

al. The system is being prototyped to study feasibility of VLSI implementation.
S.K. Arora and S.R. Dumpala introduce us to the Well-Connected Relation Comput
er, which has been designed to simultaneously support the relational, hierarchi

cal and network models of data on the same physical data. They also propose two

different storage structures for the physical data.

This issue takes up nearly twice the number of pages that I initially estimated

it would. The reason is simply that I vastly underestimated the number of

authors who have affirmatively responded to my invitation for papers. To my

pleasant surprise, I now realize that I also seriously underestimated the quali
ty of the papers that these authors eventually contributed to this issue. I

would like to thank them again for the enthusiasm and cooperation they have

shown. Due to constraints to our budget and the editors’ time, however, we will

restrict ourselves to publishing short papers (4 to 10 double-spaced pages) in

the future. We will accept (and invite) papers that describe the status of

on-going research projects, that explain design decisions that have gone into

constructing commercial systems, and that motivate and summarize (with no formu

las or theorems) important new ideas being developed.

I would like to take this opportunity to say that it is my privilege to be

assisted by four of my most outstanding colleagues. The pleasure of interacting
with the associate editors to reach editorial decisions, solicit papers from

prospective authors and chart the course of this publication has been more than

enough of a reward for my time. In fact, each of them has volunteered to publish
one issue for 1982. Our plans for 1982 are as follows. Don Batory is preparing
for a special issue on Directions in Physical Database Research for the March

issue. He is soliciting short papers (2 to 4 pages) that describe on-going
projects on physical database design. Deadline for submitting papers for the

March issue is December 1, 1981.

The June issue will be managed by Randy Katz. He plans a special issue on Data

base Applications for VLSI Designs. He is interested in papers that describe the

1

status of and/or initial results from on-going research projects in the area.

Deadline for the June issue is March 15.

David Reiner will manage a special issue on Database Query Processing for Sep
tember. He is soliciting papers that describe relatively new ideas on query

processing for both the centralized and distributed database systems. Deadline

for the issue will be June 15.

Alan Hevner will be in charge of a special issue on Research in Distributed

Database Systems for December 1982. He would like to solicit papers that empha
size the current status of research in progress, express opinions about the cur

rent state of the art and future researh directions, or papers that describe

interesting new ideas that have not been widely publicized. Deadline will be

September 15, 1982.

All papers that fall into any of these categories should be submitted to the

associate editors in charge of the special issues. Although our plans for 1982

place emphasis on the four topics mentioned above, short papers on other topics
related to database engineering will be welcomed. Papers that do not deal with

topics that the special issues are planned for and papers that ~re submitted too

late for publication consideration in one of the special issues should be sent

to me. We will consider publishing a special issue (?) on general topics during
the summer. Also please send any comments on the contents and direction of our

publication to me. We will publish selected comments in the feedback section.

A Survey and Taxonomy of Database Machines*

S. W. Song

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pa. 15213

The purpose of this paper is twofold. We survey existing database machine designs, and propose a

taxonomy. Some recent designs that exploit the rapidly advancing VLSI technology are included in

the survey. At the risk of oversimplification, the proposed taxonomy attempts to group many

seemingly different designs into a few categories by concentrating on their similarities. First we

characterize the problem by identifying two bottlenecks. Then we describe the several dimensions

the taxonomy is based on. The remainder of the paper can then be viewed as a detailed presentation
of these categories, with a brief survey of previous database machine designs that fall into each

categ pry.

1. Problem Characterization

We can identify two potential bottlenecks, namely the I/O bottleneck and the so-called von

Neumann bottleneck. Latency and bandwidth constitute the main problems of I/O. Careful design of

access paths and maintenance of appropriate indices help in reducing the number of disk accesses~

To eliminate the need for access paths and indices, database machines with fast retrieval times have

been proposed. Most database machine designs use the logic-per-track approach 29] which can

provide fast on-the-fly retrieval.

In a compute-bound task a data element participates in many operations. The best place to carry

out such a task is inside the primary memory, because of its faster access speed. It was observed in

18] that in a conventional von Neumann machine, each operation typically fetches one or more

operands from memory. Hence the amount of I/O (between the memory and the central processing

unit) is proportional to the number of operations to be performed rather than the number of inputs

required for the computation. The von Neumann bottleneck is in fact an I/O bottleneck in lesser

scale. To reduce traffic through this bottleneck, many works have been done in the context of optimal

register allocation or usage of cache memory. Studies of such solutions abound in the literature and

fall outside the scope of the present work.

This research was supported in part by the Office of Naval Research under Contracts N00014-76-C-0370, Nfl 044-422, and

N0OO14~8o:C~0236, NR 048-659, in part by the National Science Foundation under Grant MCS 78-236-76, and in part by the

Defense Advanced Research Projects Agency under Contract F33615-78-C-1551 (monitored by the Air Force Office of

Scientific Research).

Present address: University of Sao Paulo, Institute of Mathematics and Statistics, Department of Applied Mathematics,

C. P. 20570, CEP 01451, Sao Paulo, SP, Brazil. At the time this work was done, the author was supported in part by CNPq,

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil, under Contract 200.402-79-CC, and was on leave

from University of Sao Paulo.

3

2. Dimensions of the Space of Database Machine Designs

Database Machines

Location Logic-eriIi~nced Logic-enhanced

of logic secondary storage primary storage

Allocation
I

Static Dynamic Static Dynamic
of logic

Degree I I I
of logic Low High Low Low High Low

distribution I I I I I
CASSM CAFS DBC Bentley, Kung Song

(Sorting engine)
RAP Lang DIRECT Song

et al.

RARES Shaw (PAM)

Chang Kung, Lehman

Shaw (SAM) Kim, Kuck, Gaiski

Leilich et al.

Figure 2-1: An overall framework.

The taxonomy is based on several dimensions. Depending on where special-purpose logic is

applied, we have logic-enhanced secondary or primary storage designs. Most previous designs, as

we shall see, are variations of the first type. Another dimension along which designs can be classified

is the way logic is allocated to storage units, whether statically or dynamically. A third dimension is

the degree of distribution of logic among memory elements, defined in 27] as the number of storage

elements associated with each processing unit. Along this dimension, we may have a wide spectrum

of designs. High degree of logic distribution signifies faster computation rate, and this should be

such that a balance between computation and data access rate is achieved. Classification of designs

along this dimension is also important since it is related to the cost of physical implementation. As an

example, we can view a conventional von Neumann machine as a logic-enhanced primary storage

device occupying the lowest end of the logic distribution spectrum. The allocation of logic is dynamic

since one processing unit serves the entire memory. Figure 2-1 shows an overall framework,

illustrated with a few particular designs. The reader can refer to this figure when reading the rest of

this paper. Its purpose is to illustrate the several categories and not to show the exact positions of the

various designs. No attempt should therefore be made to derive quantitative conclusions. Only with a

more specific definition of degree of logic distribution and a more detailed analysis of the

implementations involved can such positions be made more precise.

4

3. Logic-enhanced Secondary Storage Designs

3.1. Uni-Search-ProcesSOr Scheme

Storage Units

Prima~ memory

Search Processor

~lj

Figure 3-1: Uni-search-processor model.

One search processor is attached between the secondary storage devices and the primary memory

(Figure 3-1). Irrelevant data can be filtered out before they reach the primary memory, and thereby

reducing I/O traffic. Some early examples of database machines are of this kind. This scheme

occupies the low end of the logic distribution spectrum. The allocation of logic is dynamic sincQ one

search processor serves the entire secondary memory. Examples include the Content Addressable

File Store, or CAFS 1, 9], and the designs by Bancilhon and Scholl 2], and by Lang et al. 19].

3.2. Multi.Search-Processor Scheme - Static Allocation

A storage unit considered in the following is usually a disk track, bubble memory, or charge-

coupled device. The static allocation scheme pre-allocates one search processor to each storage

unit, requiring as many search processors as there are storage units (see Figure 3-2). With such

designs, the search time is typically tens of milliseconds. They occupy the high end of the logic

distribution spectrum.

Among the designs which fall into this category, we cite the following. (Some of these designs,

conceived with static allocation in mind, are now shifting to the dynamic allocation scheme, to be

discussed shortly afterwards.) CASSM 32], or Content Addressed Segment Sequential Memory,

designed and with a prototype built at the University of Florida at Gainesville, is one of the earliest

design efforts and thus has exercised consid’~rable influence over other designs. RAP 25, 26], or

Relational Associative Processor, was designed and implemented at the University of Toronto. It

supports the relational data model and uses COD memories as storage units. Chang 8] proposes

slightly modified major/minor loop bubble chips to accommodate storage and access for relational

databases. RARES 23], also designed to support the relational model, differs from others mainly in

that tuples are stored across the tracks of the head-per-track disk storage. A system of up to 14

search processors has been designed and implemented by Leilich et al. 21].

5

Storage Units Search Processors

Primary memo~

0—Lill--

Figure 3-2: Multi-search-processor (static allocation).

In the static allocation scheme, each storage unit has its own private search processor and it does

not matter in which storage units a file should reside. Therefore storage organization is quite simple.

The main problem, of course, is the waste of too much potential resource. The global database may

contain information for many different users and applications. In processing one specific query,

however, the actual load (i.e., the amount of data needed for the processing) may well constitute a

tiny fraction of the whole database. Providing logic to all disk tracks of the entire database is

analogous to a memory management system in which enough physical memory is provided to hold all

programs ever written by all the users of a given installation.

3.3. Multi-Search-Processor Scheme - Dynamic Allocation

Still using our analogy with a memory management system, a virtual memory system allocates

physical memory dynamically to segments of programs only when their presence in the main store is

required for execution. The amount of physical memory can thus be significantly less than the total

program space. Similarly, in the dynamic allocation scheme, a number of search processors are

allocated dynamically to those storage units containing information to be processed. The search

logic is therefore distributed to the entire database and hence will occupy the lesser end of the logic

distribution spectrum as compared to those with static allocation. Depending on how search

processors are connected to storage units, we have many variations of. this scheme. Two of these,

which correspond to real database machine designs, will be examined.

3.3.1. Complete.Bipartite-Graph Connection

In this scheme each search processor is connected to every storage unit of the database, as

depicted in Figure 3-3. It works in the following manner. Each storage unit keeps broadcasting its

contents to all the search processors. An individual search processor can choose to listen to one of

the storage units and ignore the others. We have thus a very flexible connection. Any search

processor can operate on any storage unit. Furthermore, several search processors can operate

independently on the same storage unit, as long as they do not contend (for instance, they should not

all try to update at the same time). This connection also allows a multi-user system in which some

search processors may be operating to answer one user’s queries, while some other search

processors are working on another user’s queries. Flexibility is of course obtained at the cost of the

number of connections and the more complex control mechanism of the search processors. DeWitt

6

Search Processors

Storage Units

10], at the University of Wisconsin, ‘Madison, proposes a design of a system called DIRECT which

uses essentially this connection. A prototype has been built.

3.3.2. Partitioned-Storage-Units Connection

In this connection scheme, if we have t search processors and n storage units (typically, t << n),

then all the storage units will be divided into n/t partitions, each with t storage units. The t search

processors can be connected to the storage units of one partition, but not to storage units of different

partitions. Data residing in one partition can be examined by the search processors in essentially one

disk revolution time (assuming a storage unit to be a disk track). Therefore,, if related data are

clustered into the same partition, they can be searched very quickly. We thus see that this scheme

can provide the same performance as the static allocation scheme, given that we have enough search

processors (t is sufficiently large) and related data are properly clustered.

The Data Base Computer 3], or DBC, designed by a group headed by D. Hsiao at the Ohio State

University, fits into this model. The DBC design uses moving-head disks as storage devices, the only

requirement being the parallel read-out capability of the t tracks of one disk cylinder. Data read out

from one cylinder are then fed into t search processors. The DBC design was conceived with

dynamic allocation approach in mind, and has provided extensive literature on such issues as data

clustering and security checks 4].

3.4. Appraisal

Logic-enhanced secondary storage designs are based on the logic-per-track philosophy and have

one common goal: that of providing efficient on-the-fly search of massive amounts of data in one or a

few disk rotations. They constitute promising approaches to the important selection operation. Some

other frequently used database operations, however, require not only knowledge of the values of

individual data items, but depend on some kind of interaction among data items. The relational join

between Iwo relations of size n each, for example, requires 0(n2) comparisons in its straightforward

implementation. With a secondary associative storage device, it can be implemented as follows. For

each tuple of one relation, we extract the specific field over which the join is being performed. Then

Figure 3-3: Complete-bipartite-graph connection.

7

in one revolution time we compare it with the corresponding field of all the tuples of the second

relation. Therefore the join operation can in principle be obtained in approximatcly 0(n) revolutions,

where n is the number of tuples of the first relation. While this linear performance result might seem

quite acceptable at a first sight, we have to keep in mind that one revolution time is on the order of

tens of milliseconds. Therefore this mechanism is accefitable as long as we have a small number of

argument tuples.

Some recent designs combine the secondary associative storage devices with a logic-enhanced

primary memory. In such designs, the secondary associative memory plays an important role in the

case when the problem size is too large to be handled entirely in the primary memory. Appropriate

partitions can be retrieved by the logic-enhanced secondary storage devices and delivered to the

primary store. For example, Lin 24] discusses the usage of associative secondary storage to aid in

external sorting. Sorting is also discussed in the article on RARES 231. The method is based on the

knowledge of a histogram concerning the key values. By using content addressability of the

secondary store, the appropriate partition is brought into the main memory which is assumed to be

fast enough to produce sorted sequences in a pipelined fashion as a new partition is being retrieved.

Discussions of several partitioning schemes can be found in 27, 311.

4. Logic-enhanced Primary Storage Designs
Depending on the degree of logic distribution, several kinds of logic-enhanced primary storage

designs can be considered. At the low end of the spectrum is the attachment of special-purpose
hardware of limited size to a conventional passive memory. In such designs, logic is allocated

dynamically to the entire memory. At the other end of the spectrum are the designs using the so-

called smart memory (which we will refer to as logic-per-datum designs), in which there is a

commingling of logic and memory elements in a fine grain. Such designs are of very high

performance and constitute a departure from the von Neumann architecture.

4.1. The Post-Processors of The DBC Design

In the DBC design mentioned earlier, functions such as sorting of retrieved records, relational join

operations on two sets of records retrieved from secondary memory, and such set functions as

maxima and average, are all handled by what is known as the post-processors. Recall that search

logic is allocated dynamically to the secondary memory so that a cylinder of data can be content

searched in essentially one disk rotation. The retrieved data are fed, in a pipelined fashion, to the

post-processors. The post-processing functions are presented in a number of reports describing the

sort operation 13] and the join operation 12, 14]. In particular the last report also contains a

comparison of the DBC join method with other proposed methods. The post-processing functions are

performed by a multiprocessor system consisting of a number of linearly connected processors each

with private memory. In an earlier description 12] they share an associative memory for storage and

fast retrieval of join attribute values. The associative memory maps each unique join attribute value to

an integer index. To join relations A and B, for example, the tuples of relation A is first stored in

appropriate memory locations according to the integer index provided bythe associative memory.

Then for each tuple of relation B whose join attribute value is in the associative memory, the

corresponding tuples of A can be located. The result tuples can thus be obtained by concatenation.

This first design has the drawback of not being easily hardware-extensible. All processors share the

same associative memory. which will become a bottleneck when the number of processors increases.

A new design described in 14] distributes the associative memory among all the processors, such

that each will contain a fraction of the original associative memory.

8

4.2. The Hierarchical Associative Architecture

A hierarchical associative architecture has been proposed by Shaw 28] or the efficient evaluation

of relational primitives such as join, project, and select. It consists of a hierarchy of associative

storage devices under the control of a general-purpose processor. At the bottom of the hierarchy is a

secondary associative memory (SAM), which may be implemented using parallel logic-per-track disks,

as in CASSM, RAP or RARES. At the top of the hierarchy is a primary associative memory (PAM),
capable of fast content-based searches. Complex relational primitives such as the join operation on

two relations are evaluated in the primary associative meniory, with the assistance of the secondary
associative memory. Shaw considers the important case of handling large problems whose size

exceeds that of the primary associative memory. He distinguishes two kinds of evaluations, namely,
internal evaluation where the argument relations can be fit entirely into the primary associative

memory, and external evaluation where the relations exceed its capacity. Shaw shows that when

argument relations are large, the time required for the evaluation of complex primitives with the

hierarchical associative architecture represents a substantial improvement over the results attainable

using only secondary associative storage devices.

4.3. Systolic Priority Queues

The systolic array approach has been proposed as a solution to offload costly computations: for a

list of systolic algorithms, see 17]; for a discussion of the philosophy of the systolic architecture, see

18]. One systolic design especially useful in database applications is the priority queue proposed by

Kung and Leiserson 22]. A linear array of cells is used to store a collection of elements with the

possible operations of insertion, deletion and minimum extraction. (Fisher 11] presents designs of

systolic arrays for computing running order statistics where ranks other than the minimum and input

spaces of higher dimensions are considered.) In addition to storage, some comparison logic is

provided at each cell. A sequence of the above operations can be executed concurrently in a

pipelined fashion, in such a way that the response time is a constant, independent of the length of the

array. Notice that a systolic priority queue is a logic-per-datum device and, as such, occupies the

high end of the logic distribution spectrum. However, if such a device of limited size is used to aid in

the internal sorting of a much larger collection of numbers, then the degree of logic distribution will

be considerably less. (Song 31] examines internal sorting with the aid of systolic devices.) Hence,

depending on the size of a systolic device and the problem size it is able to handle, its usage may be

economically infeasible, or perfectly viable and justifiable.

4.4. The Systolic Arrays for Relational Operators

Kung and Lehman 16] consider the use of a large number of simple processors connected in a

linear array for the handling of relational operators. They describe, among others, arrays for

performing intersection (which can also be used for projection with duplicate removal) and join of two

relations. A single database transaction may consist of a number of relational operations. Therefore

to process all the operations required in one or more transactions, an integrated system containing
several systolic arrays is needed. A crossbar scheme connecting the memories holding required data

and the special-purpose systolic arrays is proposed.

In a recent work by Kim, Kuck, and Gajski 15], a bit-serial/tuple-parallel relational query processor

is proposed. The scope of the study is limited to designing a query processor that will efficiently

process data already loaded into the primary memory. As in the case of the systolic arrays of Kung
and Lehman, the proposed query processor is designed with the view toward LSI (VLSI)

implementation.

9

4.5. The Tree Machine

A logic-per-datum design consisting of a binary tree of cells has been proposed by Bentley and

Kung 5] (and independently by Browning 6, 7]). The internal cells of the binary tree can propagate

information to, as well as combine the information of the descendant cells (such as taking the logical

and, or select the minimum, etc.). Data elements reside in the leaf cells which are provided with logic

to carry out a limited repertoire of instructions. Such a structure is especially suitable for different

kinds of searching problems, because of the logarithmic path between the root cell and any leaf cell.

It has been extended by Song 30, 31] to handle the sort operation, and relational operations such as

project, join, and union. Such a design is of high performance and occupies the high end of the logic
distribution spectrum.

4.6. Appraisal

Logic-enhanced primary memory designs are useful for compute-bound tasks where a same datum

participates in many operations. On the other hand, I/O-bound tasks such as selection are better

handled by logic-enhanced secondary storage devices, before the data even get to the primary

memory. The best architecture is perhaps a hierarchy containing both kinds of devices. Logic-
enhanced secondary devices may be used to filter out the irrelevant data, and more complex

operations on the selected ones are processed in the logic-enhanced primary memory. Designs
where logic is allocated dynamically to the entire memory is usually economical to implement but

require careful study of the issue of problem partitioning, that is, how to decompose a large problem

such that it can be handled by a special-purpose device of smaller size. The logic-per-datum designs

can provide very high performance and constitute a departure from the von Neumann architecture.

Their implementation cost may however limit their usage to very specialized applications, where fast

response time and throughput are required, e.g. on-line bank-teller systems that support a huge

number of simultaneous transactions 20].

Acknowledgment

The author wishes to thank Dr. Won Kim for his valuable comments and suggestions.

References

1] E.Babb.

Implementing a Relational Database by means of Specialized Hardware.

ACM Transactions on DatabaseSystems4(1):1-29, March, 1979.

2] F. Bancilhon and M. Scholl.

Design of a Backend Processor for a Data Base Machine.

In Proceedings of the ACM SIGMOD 1980 International Conference on Management of Data,

pages93-93g. May, 1980.

3] J. Banerjee, D. K. Hsiao, and K. Kannan.

DBC - A Database Computer for Very Large Databases.

IEEE Transactions on Computers 28(6):41 4-429, June, 1979.

4] J. Banerjee, D. K. Hsiao, and J. Menon.

Tfrë Clustering and Security Mechanisms of a Database Computer.

Technical Report OSU-CISRC-TR-79-2, The Ohio State University, Computer and Information

Science Research Center, April, 1979.

10

5] J. L. Bentley and H. T. Kung.
A Tree Machine for Searching Problems.

In Proceedings of 1979 International Conference on Parallel Processing, pages 257-266.

IEEE, August, 1979.

Also available as a CMU Computer Science Department technical report CMU-CS-79-142,

September, 1979.

6] S. A. Browning.

Computations on a Tree of Processors.

In Proc. Conference on Very Large Scale Integration: Architecture, Design, Fabrication, pages

453-478. January, 1979.

Conference held at Caltech in Pasadena, California.

7] 5. A. Browning.
The Tree Machine: A Highly Concurrent Computing Environment.

PhD thesis, Computer Science Department, California Institute of Technology, January, 1980.

8] H. Chang.
On Bubble Memories and Relational Data Base.

In Proceedings 4th International Conference on Very Large Data Bases, pages 207-229. 1978.

9] G. F. Coulouris, J. M. Evans, and R. W. Mitchell.

Towards Content Addressing in Data Bases.

Computer Journal 15(2):95-98, May, 1972.

10] D. J. DeWitt.

DIRECT - A Multiprocessor Organization for Supporting Relational Database Management

Systems.
IEEE Transactions on Computers C-28(6):395-406, June, 1979.

11] A. L. Fisher.

Systolic Algorithms.for Running Order Statistics in Signal and Image Processing.

Technical Report, Carnegie-Mellon University, Computer Science Department, 1981.

In preparation.

12] D. K. Hsiao and M. J. Menon.

The Post Processing Functions of a Database Computer.

Technical Report OSU-CISRC.TR-79-6, Computer and Information Science Research Center,

The Ohio State University, July, 1979.

13] D. K. Hsiao and M. J. Menon.

Parallel Record Sorting Methods for Hardware Realization.

Technical Report OSU-CISRC-TR-80-7, Computer and Information Science Research Center,

The Ohio State University, July, 1930.

14] D. K. Hsiao and M. J. Menon.

Design and Analysis of Relational Join Operations of a Database Computer (DBC).

Technical Report OSU-CISRC-TR-80-8, Computer and Information Science Research Center,

The Ohio State University, September, 1980.

11

15] Won Kim, D. J. Kuck, and D. Gajski.

A Bit- Serial/Tuple- Parallel Relational Query Processor.

Research Report RJ 3194, IBM Research Laboratory, San Jose, California, July, 1981.

16] H. 1. Kung and P. L. Lehman.

Systolic (VLSI) Arrays for Relational Database Operations.

In Proceedings of the ACM SIGMOD 1980 International Conference on Management of Data,

pages 105-116. ACM, May, 1980.

Conference held in Santa Monica, California. Also available as a Carnegie-Mellon University

Computer Science Department technical report CMU-CS-80-1 14, March, 1980.

17] H. T. Kung.
Let’s Design Algorithms for VLSI Systems.

In Proc. Conference on Very Large Scale Integration: Architecture, Design, Fabrication, pages

65-90. January, 1979.

Conference held at Caltech in Pasadena, California. Invited paper.

18] H. T. Kung.

Why Systolic Architecture.

To appear in Computer Magazine, 1981.

19] T. Lang, E. Nahouraii, K. Kasuga, and E. B. Fernandez.

An Architectural Extension for a Large Database System Incorporating a Processor for Disk

Search.

In Proceedings of the Third International Conference on Very Large Data Bases, pages 204-

210. 1977.

20] P. L. Lehman.

The Theory and Design of Systolic Database Machines.

Thesis Proposal. Carnegie-Mellon University, Computer Science Department, December,

1980.

21] H. 0. Leilich, G. Stiege, and H. C. Zeidler.

A Search Processor for Data Base Management Systems.

In Proceeding 4th Conference on Very Large Data Bases, pages 280-287. September, 1978.

22] C. E. Leiserson.

Systolic Priority Queues.

In Proc. Conference on Very Large Scale Integration: Architecture, Design, Fabrication, pages

199-214. Caltech, January, 1979.

Also available as a CMU Computer Science Department technical report CMU-CS-79-1 15,

April, 1979.

23] C. S. Lin, D. C. P. Smith, and J. M. Smith.

The Design of a Rotating Associative Memory for Relational Database Applications.

ACM Transactions on Database Systems 1(1):53--65, March, 1976.

24] C.S.Lin.

Sorting with Associative Secondary Storage Devices.

In Proceedings of the National Computer Conference, pages 691-695. 1977.

12

25] E. A. Ozkarahan, S. A. Schuster, and K. C. Sevcik.

Performance Evaluation of a Relational Associative Processor.

ACM Transactions on Database Systems 2(2):175-195, June, 1977.

26] S. A. Schuster, H. B. Nguyen, E. A. Ozkarahan, and K. C. Smith.

RAP 2 - An Associative Processor for Databases and its Applications.

IEEE Transactions on Computers C-28(6):446-458, June, 1979.

27] D. E. Shaw.

A Hierarchical Associative Architecture for the Parallel Evaluation of Relational Algebraic
Database Primitives.

Technical Report STAN-CS-79-778, Department of Computer Science, Stanford University,

October, 1979.

28] D. E. Shaw.

A Relational Database Machine Architecture.

In Fifth Workshop on Computer Architecture for Non-Numeric Processing, pages 84-95. ACM,

March, 1980.

29] D. L. Slotnick.

Logic per Track Devices.

In Tou, J. (editor), Advances in Computers, Vol. 10, pages 291 -296. Academic Press, New

York, 1970.

30] S.W.Song.
A Highly Concurrent Tree Machine for Database Applications.

In Proceedings of the 1980 International Conference on Parallel Processing, pages 259-268.

IEEE, August, 1980.

Also available as a CMU technical report, VLSI Document V055, June, 1980.

31] S.W.Song.
On a High-Performance VLSI Solution to Database Problems.

PhD thesis, Carnegie-Mellon University, Computer Science Department, 1981.

32] S. Y. W. Su, L. H. Nguyen, A. Emam, and C. L. Lipovski.
The Architectural Features and Implementation Techniques of the Multicell CASSM.

IEEE Transactions on Computers C-28(6):430-445, June, 1979.

13

The Laboratory for Database Systems Research

at the Ohio State University

David K. Hsiao

Dept. of Computer and Information Sciences

The Ohio State University
Columbus, Ohio

The Laboratory for Database Systems Research was established in August 1980 for

the purpose of conducting experimental research in the area of database software

and hardware architectures. With substantial equipment grants from the Digital
Equipment Corporation, Office of Naval Research and The Ohio State University,
the laboratory is endowed with considerable computer equipment for supporting
experimental work. The equipment configuration is depicted in the Figure. Pres

ently the research on datbase computer architecture has both short-term and

long-term goals. For the short term, we are concentrating on a research program

in multi-mini database management systems. For the long term, we are striving
for an ideal database machine architecture. Let us describe briefly these two

programs.

Research Program in Multi-Mini Database

Management Systems

It is generally known that the use of a single general-purpose digital computer
with dedicated software for database management to offload the mainframe host

computer from database management tasks yields no appreciable gains in perform
ance and functionality. Research is therefore being pursued to replace this

software backend approach to database management with an approach which will

yield good performance and new functionality.

The proposed research utilizes a system of six PDP ll-44s and one VAX 11/780,
known as the test vehicle Each of the PDP 11-44 computer systems consists of a

primary memory box of 256K bytes, at lease one disk of 67M bytes and a

memory-to-memory bus connected to the VAX 11/780 which has l.5M bytes of primary

memory and assorted peripheral devices. The configuration is intended to achieve

concurrent operations among the six PDP ll-44s and their respective disks. The

VAX 11/780 schedules the concurrent operations on the PDP ll-44s, communicates

with other computer systems (known as front-ends) and serves as the control of

the entire configuration (i.e., the database computer backend). For our study,
the VAX 11/780 also interfaces with the systems programmers (See Figure).

The aim of the proposed research is to investigate whether, for the management
of large databases, the use of multiple minicomputer systems in a parallel con

figuration is feasible and desirable. By feasible we mean that it is possible to

configure a number of (slave) minicomputers, each of which is driven by identi

cal database management software and controlled by a (master) minicomputer for

concurrent operations on the database spread over the disk storage local to the

slave computers. This approach to large databases may be desirable because only
off-the-shelf equipment of the same kind is utilized to achieve high performance
without requiring specially built hardware and because identical database man

agement software is replicated on the slave computers. The approach makes the

expansion of the capacity and concurrency of the database management system

easy.

14

To study the feasibility, we intend to investigate the software architecture

issues and hardware limitations o.f the master and slaves. We also intend to

investigate the replicable software for the slaves. Since these slaves are to be

operated concurrently with corresponding single-channel disks, we can investi

gate the effects of either single-query, multiple-database stream or

multiple-query, multiple-database stream operations for performance improve
ment. To study the desirability, we intend to consider factors relating to the

problem of capacity growth and cost effectiveness. The central issue may be

whether we can realize a high-performance and great-capacity database manage
ment backend with the cheapest possible mincs, large number of single-channel
disks and replicable software cost-effectively.

The above program is termed short term, because it assumes only available hard

ware and present technology. Furthermore, both feasibility and desirability
issues can be resolved in the time frame of two to three years.

Research Program on Database Machine Architecture

In the long run, the solution to large-capacity and high-performance database

management may li~ in special-purpose machines, known as the

database computers With the advent of LSI and VLSI, block access memories (such
as magnetic bubbles and charge-coupled devices), and modified and improved
online disk technology, it is perhaps time to replace complex and inefficient

database management system software (DBMS) with innovative and cost/performance
effective hardware solutions to very large database management. This search for

an ultimate database machine architecture to provide large-capacity,
high-performance and low-cost database management is the goal of this research

undertaking.

Initially, the test vehicle is used to emulate the architecture of the database

computer DBC (see References). As specialized hardware, DBC is designed to han

dle very large databases (say, beyond 10 billion characters), to perform data

base management operations effectively, and to yield high throughput
unattainable by general-purpose computers with conventional database manage
ment software. Due to the complexity of database applications and the diversity
of database management, analytical evaluation of database computer performance
has been mostly based on broad assumptions and simplified settings. Although
these evaluation results have been published (see References), they are too

gross to be useful for the identification of performance bottlenecks caused by
the components of the database computer. Without a closer examination and

refined evaluation of potential performance bottlenecks of various hardware

components, it is not possible to locate the strong and weak points of the data

base computer architecture. Consequently, improvements to the database computer
design cannot be readily carried out.

By emulating the database computer on the test vehicle, experimental and realis

tic performance evaluation of DBC in supporting various database applications
can be conducted. The evaluation of DBC in supporting various database applica
tions can be conducted. The evaluations can focus on database management in

terms of modes of operations (e.g., retrieval-intensive vs. update-intensive),
models of databases (say, relational vs. CODASYL) and time and space constraints

of the man/database interaction (e.g., real-time requirements with redundant

data entries and integrity requirements with serial updates).

15

The information gained from the performance evaluation can then be extrapolated
to reflect the performance of DBC. Furthermore, the information can be used to

verify the analytical results found earlier.

The objectives of the research are: (1) To identify the performance evaluation

techniques and methodology that are unique to database computer architecture.

(2) To validate the analytical study of the DBC design against the experimental
results conducted on the test vehicle. (3) To relate the findings on the emu

lation to the design details of DBC in particular and of database computers in

general. And (4) To recommend modifications and improvements of the DBC archi

tecture in order to support very large databases, attain high throughput and

perform effective database management.

Nore specifically, the test vehicle is being configured to reflect the design of

the three major components of DBC. The three components are (1) the database

command and control processor DBCCP (i.e., the central processing and control

unit of DBC) which executes the DBC commands, clusters the records for input and

updates, schedules various subtasks and activities of DBC, and communicates with

the host computer; (2) the online mass memory MN (i.e.
,
the repository of the

database) which provides high-volume and high-performance database management
with track-in-parallel readout and write-in and content-addressability fea

tures; and (3) the structure memory SN (i.e., the index storage and processing
unit) which enables access control information to be stored and processed readi

ly so that accesses to the database can be restricted to relevant and authorized

data, thereby narrowing the content-addressable space of the mass memory MM.

Physically, the PDP ll-44s will be used to emulate the DBCCP.

Ultimately, this program will lead to the study of other database machine archi

tectures and their relative cost and performance gain and loss compared to the

performance and cost of the DBC design.

The test vehicle of 6 PDP ll-44s and one VAX 11/780 and assorted disks, termi

nals, tapes and printer will be funded in two stages. In the first stage, two PDP

l1-44s with three disk devices, one tape station, four terminals and one printer
have been funded for the 1980-1982 period. In addition, parallel transfer buses

connecting the PDP ll-44s and VAX 11/780 are included. The equipment and its

maintenance are funded jointly by the Digital Equipment Corporation, the Office

of Naval Research and the Ohio State University.

Director of the laboratory is Douglas S. Kerr; and graduate students presently

working in the laboratory are Jaishankar Menon, Au Orooji, Tamer M. Ozsu and

Paula Strawser

16

To Host Computers (say, DEC 20/20)

stageT~frerminals

I I

I I
I I

I I

I I

Six PDP 11—44

Computer Systems

One VAX 11/780

Computer System

Printer

Primary

Nemory
Disk

Figure: A Test Vehicle for Database Computer System Research

17

REFERENCES

On the Design of a Database Computer, known as DBC:

1] Banerjee, J., R. Baum, and D.K. Hsiao. “Concepts and Capabilities of a

Database Computer”, ACM Transactions on Database Systems (TODS), 3, 4,
December 1978, pp. 347-384.

21 Banerjee, 3. and D.K. Hsiao. “DBC - ADatabase Computer for Very Large
Databases”, IEEE Transactions on Computers C-28, 6, 1979, pp. 414-429.

31 Kannan, IC, D.K. Hsiao, and D. Kerr. “A Microprogramming Keyword Transfor

mation Unit for a Database Computer’t, Proceedings of the 10th Annual york

shop on t’licroprogramming New York, October 1977, pp. 71-79.

4] Hsiao, D.K., K. Kannan, and D. Kerr. “Structure Memory Designs for a Data

Base Computer”, Proceedings of ACM Conference ‘77 Seattle, October 1977,

pp. 343-350.

5] Kannan, K.~ “The Design of a Mass Memory for a Database Computer”,
Proceedings of the Fifth Annual Symposium on Computer Architecture April
1978, pp. 44-51.

6] Banerjee, J. and D.K. Hsiao “Parallel Bitonic Record Sort - An Effective

Algorithm of the Realization of a Post Processor”, Technical Report, The

Ohio state University, (OSU-CISRC-TR-79-1), March 1979.

7] Banerjee, J., D.K. Hsiao, and J. Menon. “The Cluster and Security Mech

anisms of a Database Computer (DBC)”, Technical Report, The Ohio State Uni

versity, (OSU-CISRC-TR-79-2), April 1979.

8] Hsiao, D.K. and J. Menon. “The Post Processing Functions of a Database Com

puter”, Technical Report, The Ohio State University, (OSU-CISRC-TR-79-6),

July 1979.

9] Hsiao, D.K. and J. Menon. “Design and Analysis of Update Mechanisms of a

database Computer (nBC)”, Technical Report, The Ohio State Universtiy,
(OSU-CISRC-TR-80-3), June 1980.

10] Hsiao, D.K. and J. Menon. “Parallel Record-Sorting Methods for Hardware

Realization”, Technical Report, The Ohio State University,

(OSU-CISRC-TR-8O-7), July 1980.

On DBC’s Capability in Supporting Existing Database Applications with Improved
Throughput:

11] Banerjee, 3., D.K. Hsiao, and F. Ng. “Database Transformation, Query
Translation and Performance Analysis of a New Database Computer in Support

ing Hierarchical Database Management”, IEEE Transactions on Software Engi
neering SE-6,1 January 1980, pp. 91-109.

18

12] Banerjee, J., and D.K. Hsiao. “A Methodology for Supporting Existing
CODASYL Databases with New Database Machines”, Proceedings of ACM Confer

ence ‘78 Washington, D.C., December 1978.

13] Banerjee, J. and D.K. Hsiao. “The Use of a Database Machine for Supporting
Relational Databases”, Proceedings of the 5th Annual Workshop on Computer
Architecture for Non-numeric Processing Syracuse, N.Y., August 1978.

14] Banerjee, J. and D.K. Hsiao. “Performance Study of a Database Machine in

Supporting Relational Databases”, Proceedings of the 4th International

Conference on Very Large Data Bases Berlin, Germany, September 1978.

On General Treatment on Database Computers:

15] Baum, R.I. and D.K. Hsiao. “Database Computers - A Step Towards Data Util

ities”, IEEE Transactions on Computers C-25, 12, december 1976, pp.

1254-1259.

16) Hsiao, D.K., “Database Computers”, Advances in Computers Academic Press,
v. 19, June 1980, pp. 1-64.

17] Hsiao, D.K., “The Role of Database Computer Prototypes”, to appear in the

Proceedings of the 13th International Hawaii Conference on System Science

Honolulu, Hawaii, January 1980.

18] Hsiao, D.K. and S.E. Madnick. “Data Base Machine Architecture in the Con

text of Information Technology Evolution”, Proceedings of the 3rd Interna

tional Conference on Very Large Data Bases Japan, October 1977, pp. 63-84.

19] Hsiao, D.K., “Future Database Machines”, Future Systems Infotech State of

the Art Report, November 1977, (U.S. distributors: Auerback Publisher,

Ltd.) pp. 307-330.

20] Banerjee, J. and D.K. Hsiao. “Data Network - A Computer Network of

General-purpose Front-end Computers and Special-purpose Back-end Data Base

Machines”, Proceedings of the International Symposium on Computer Network

Protocols Leige, Belgium, February 1978.

21] Hsiao, D.K., “Database Machines are Coming: Database Machines are Coming! -

A Guest Editor’s Introduction”, Computer Magazine, 11,3, 1979, pp. 7-9

22] Kerr, D. “Database Machines with large Content - Addressable Blocks and

Structural Information Processors”, Computer Magazine 11,3, 1979, pp.

64-79.

19

Database Machine Activities

at

The University of Wisconsin

Haran Boral

David J. DeWitt

Computer Sciences Department

University of Wisaonsin

Madison, Wisconsin

Abstract

In this paper we summarize recent database machine research activities at the

University of Wisconsin, outline current research projects, and describe our

future research plans.

1. Introduction

Rather than using this forum to discuss one current database thachine research

project at the University of Wisconsin (which the reader might or might not be

interested in), we decided to present brief descriptions of several completed
and ongoing projects. We hope that this format will serve the casual reader by

permitting him/her to quickly find out what we have been doing, while, at the

same time, providing the database machine researcher with references to those

results that have not yet found (or never will find) their way into the litera

ture.

The research projects described in this document largely grew out of the DIRECT

project. Several people have worked on DIRECT and participated in some of the

projects. Although this document is authored by only two of us this should not

be understood by the reader to mean that we did all the research work. Rather, it

was a group effort. Jim Goodman and Randy Katz joined our department after most

of the work reported here began. We included a description of their recent data

base machine activities.

The results of some recently completed research projects are presented in

Section 2. Section 3 describes some of our ongoing database machine activities.

In Section 4, we descibe some activities that we have planned for the future.

2. Recent Research Results

In this section we present the results of some recently completed database

machine research projects.

2.1. Parallel Algorithms for the Execution of Relational Database Operations

In BORA8O] we present and analyze algorithms for parrallel processing of rela

This research was partially supported by the National Science Foundation under

grant !~ICS78-Ol72l, the United States Army under contracts #DAAG29-79-C-0165 and

#DAAG29-80-C-0041, and the Department of Energy under contract

#DE-ACO2-81ER10920.

20

tional database operations in a DIRECT-like multiprocessor framework. To ana

lyze the alternative algorithms, we developed an analysis methodology which

incorporates I/O, CPU, and message costs. The paper presents parallel algorithms
for sorting, projection, join, update, and aggregate (both scalar aggregates and

aggregate functions) operations. Although some of these algorithms have been

suggested previously in the literature, we generalized each in order to handle

the case where the total amount of memory in the processors is not sufficient to

hold all the data operated on.

One (rather obvious) goal of this research was to compare alternative parallel

algorithms for relational database operations. However, the primary goal of this

research was to evaluate these alternative algorithms so that we could begin the

design of a new database machine using an algorithmic approach (top down) rather

than an architecture-directed approach DEWI81].

This research was conducted by H. Boral, D. DeWitt, D. Friedland, and W.K.

Wilkinson.

2.2. Performance Evaluation of Four Associative Disk Designs

While our research on parallel a’gorithms evaluated alternative techniques for

processing complex relational operations, it did not address the problem of

efficiently processing selection operations. In BORAB2] we develop models of

alternative associative disk architectures and present the results of an

event-driven simulation based on this model. The designs analyzed are

Processor-per-Track (Processor-per-Bubble-cell (PPB), Processor-per-Head

(PPH), and Processor-per-Disk (PPD). We considered the effects of a number of

factors, including output channel contention, availability of index informa

tion, impact of mark bits, and channel allocation policy on the performance of

these machines. Our results indicate that while in the general case the PPT

organization is best, the performance of the PPB design is remarkably good con

sidering the slow speed of bubble memory chips. Also index information can be

used by both the PPH and PPD organizations to improve their performance to a

level almost comparable to PPT.

This research was conducted by H. Boral, D. DeWitt, and W.K. Wilkinson.

2.3. Using Data-Flow Techniques in Database Machines

After the design of DIRECT was completed (1977) we began to examine different

strategies for allocating processors to tasks in order to maximize performance.

The reults of this research are presented in BORA81a].1 The main result of this

work is that dynamic scheduling of processors using a data-flow strategy can

provide significant improvements in performance. However, this increase in per

formance is achieved only through a significant increase in control costs. A

database machine such as DIRECT with its centralized controller is not appropri
ate. In~fact, it was shown that the cost of controlling the processors in DIRECT

dominated the execution time even for the static strategies. We therefore began
to examine new ways of organizing database machines that could efficiently sup

port data-flow query processing.

Using the results of our research on parallel algorithms BORA8O]) and our

1. This research was completed in 1979.

21

results on associative disk design BORA82]) we have finished an initial design
of a database machine, named FLASH, that uses data-flow techniques. This machine

uses broadcasting as the basic building block for all relational algebra algo
rithms, and combines “on-the-disk” processing of selection operations with

“off-the-disk” processing of complex relational operations.

We have recently been critical of other researchers for designing “yet another”

paper database machine. For that reason we have not prepared a document describ

ing FLASH.2 We are beginning to study different ways of comparing the perform
ance of database machines. We intend to demonstrate (to ourselves) that FLASH

significantly outperforms other proposed designs and that its performance jus
tifies its complexity before we trumpet its design.

This work was performed by H. Boral and D. DeWitt.

2.4 Performance Evaluation of Database Machine Architectures

While many database machine designs have been proposed, each proposal is usually
vague about its performance with respect to a given data management application
or other database machine. Furthermore, no one has attempted.a comprehensive
performance evaluation of different database machine architectures. In

DEWI81]3 we develop a simple analytical model of the performance of a conven

tional database management system and four generic database machine architec

tures. This model is then used to compare the performance of each type of

machine with a conventional DBMS for selection, join, and aggregate function

queries. We demonstrate that 1) no one type of database machine is best for

executing all types of queries, 2) for several classes of queries, certain

database machine designs which have been proposed are actually slower than a

DBMS on a conventional processor, and 3) increases in complexity of hardware

generally do not result in corresponding increases in performance.

This research was conducted by D. DeWitt and P. Hawthorn of Lawrence Berkeley
Laboratory.

2.5. Implementation of the Database Machine DIRECT

DIRECT is a multiprocessor database machine designed and implemented at the Uni

versity of Wisconsin. The initial design was completed in 1977. In the spring of

1980 we had a first working version of DIRECT running on 5 LSI 11/03 microcom

puters. In BORA81c] we describe our experiences with the implementation of

DIRECT.

The paper begins with a brief overview of the original machine proposal and how

it differs from what was actually implemented. We then describe the structure of

the DIRECT software. This includes software on host computers that interfaces

with the database machine; software on the back-end controller of DIRECT; and

sofware executed by the query processors. In addition to describing the struc

ture of the software we attempt to motivate and justify its design and implemen
tation. The paper also discusses a number of implementation issues (e.g.,
debugging of the code across several machines) and concludes with a list of the

2
. .

An outline of FLASH is provided in BORA81b].

3See HAWT82J for an earlier attempt at comparing the performance of specific

database machines.

22

“lessons” we have learned from this experience.

The implementors of DIRECT are H. Boral, D. DeWitt, D. Friedland, N. Jarrell,
and W. K. Wilkinson.

2.6 Duplicate Record Elimination in Large Data Files

This paper FRIE81J addresses the issue of duplicate elimination in large data

files in which many occurrences of the same record may appear. The paper begins
by presenting a comprehensive cost analysis df the duplicate elimination oper

ation. This analysis is based on a combinatorial model developed for estimating
the size of intermediate runs produced by a modified merge-sort procedure (in
which duplicates are eliminated as encountered). We demonstrate that the per

formance of this modified merge-sort procedure is significantly superior to the

standard duplicate elimination technique of sorting followed by a sequential

pass to locate duplicate records. These results can also be used to provide
critical input to a query optimizer in a relational database system.

This research was conducted by D. Friedland and D. DeWitt.

2.7 Concurrency Control andRecovery in Transaction Processing Systems

While most of our database machine efforts have concentrated on the design of

database machines for processing “large” queries (those that touch large amounts

of data and take a long time to execute), we have recently begun to explore data

base machines for processing large volumes of “small” transactions (e.g.
“debit-credit” transactions). In WILK81J we examine issues of concurrency con

trol and recovery in a database machine that consists of user nodes (intelligent
terminals) connected to database server nodes via an ethernet communications

device.

The central idea in this work is a “passive” concurrency control mechanism which

makes use of the broadcast nature of the communications medium. By eavesdropping
on requests that correspond to database accesses by the user nodes to the data

base server nodes, a single concurrency control node can perform conflict analy
sis for the entire system without explicit lock messages.

We present two algorithms: a passive locking and a passive non-locking algo
rithm, and show that they are robust to communications and processor failures.

Simulation results indicate that the passive schemes have very low overhead and

perform better than corresponding distributed algorithms (both locking and

non-locking) in this environment. Also, we show that the cost of the recovery

protocol necessary to ensure atomic commit at all sites (i.e., the distribtued

two-phase commit protocol) is high and, in many cases, overshadows the cost of

concurrency control.

2.8. VLSI Implications of Database Systems

Our research has also been directed at exploiting the vast capabilities avail

able with the arrival of VLSI technology. By the middle of the decade, it will be

possible to build single-chip processors, including memory, with performance
capabilities achievable only by main-frame computers today. While this enormous

computational power will be available at a modest cost, the processor require
ments resulting from the support of a large modern database system are also very

substantial. And though it may be possible to build a single, supercomputer from

23

many VLSI components, a much more cost-effective aoproach will probably be to

construct a system using large numbers of single-chip computers.

We have postulated a processor model, incorporating VLSI constraints. We have

concluded that a single integrated circuit type, containing a more-or-less con

ventional von Neumann processor with a significant amount of memory, can be

employed to construct a machine with great generality in capability but which

will perform database operations in a highly efficient manner. We have analyzed

a number of possible topologies for a collection of these processors, assuming

processors approximately in proportion to the number of disk heads available. We

have studied the performance of a number of topologies for the most important

relational database operations.

In GOOD8Oa] we examined the duplicate elimination problem resulting from the

relational projection operation. We concluded that the topology strongly influ

ences the effectiveness of various algorithms, and that for each topology there

is an optimal algorithm. Comparing these pairs, we concluded that the best

topology we could think of was a variation of the X-Tree Hypertree intercon

nection GOOD8la], containing a perfect shuffle interconnection at the leaves of

the tree.

In GOOD8lb] we studied parallelized version of traditional join algorithms in a

similar manner, finding that performance was deficient. In GOOD8Ob] we consid

ered hashing techniques, inspired by BABB79], to implement the equi-join algo

rithm, and showed that these can be used with the Hypertree interconnection to

implement extremely efficient join algorithms.

This section was written by J. Goodman.

2.9. VLSI Implementation of a Join Chip

Randy Katz designed and implemented a custom VLSI chip for processing

equi-joins. The chip accepts three serial bit streams: one each for the inner

and outer tuples of the nested loops join method, and a bit mask. A flag is set

if the tuples are equal under the mask. The concatenation of the tuples is

formed on-board the chip, and removed at twice the input bit rate. The total

design was laid out in under three weeks using the Mead-Conway design methodol

ogy, and consists of approximately 1500 transistors. The chip is in fabrication,

and should be available for testing soon. Clearly we can make no claim as to the

utility of the chip for processing joins, but the application of VLSI technology
to database processing is certainly an intriguing area of research.

3. Current Activities

3.1. DIRECT Implementation

The implementation of DIRECT is proceeding in several directions. In July 1981,

we finished implementing the INGRES update operations utilizing the parallel

update algorithms presented in BORA8OJ. We have recently begun implementing
scalar aggregates and aggregate functions. This will complete an initial version

of DIRECT except for implementation of concurrency control and recovery (some

thing we have not yet figured out how to do).

The host and back-end software for DIRECT is presently running on a PDP 11/40

that runs Version 6 UNIX and INGRES. This machine is on its very last legs and

24

will be retired in early November 1981. It will be replaced with a VAX 11/750
which has been ordered. Adquisition of this new machine to run the DIRECT

back-end and controller software is a mixed blessing.

A PDP 11/40 outperforms an LSI 11/23 (of which eight are used for query process

ors in the present DIRECT implementation) only marginally. Thus INGRES (read
“DIRECT host software”) is incredibly slow. Replacing the PDP 11/40 with a VAX

11/750 will significantly enhance respone time and will permit us to perform a

number of benchmarks on DIRECT. On the other hand, VAX-INGRES runs as two proc

esses and is written in Verison 7 C. Thus, ~e must redo all of our modified

INGRES software and some of the DIRECT back-end controller software. This will

probably take at least one-man year of effort.

Another change in the DIRECT configuration is that we are presently replacing
the nonDMA parallel word interfaces that have been used to connect the LSI

1l/23s to the 11/40 with DNA, “ethernet-like” interfaces. Since these interfaces

permit DMA I/O, DIRECT performance should be enhanced.

3.2. Research Activities

3.2.1. Statistical Database Machines

We have recently begun to investigate the possibility of constructing a proto

type database machine intended to improve performance for users of very large
statistical databases. Currently we are extending the aggregate algorithms pre

sented in {BORA8O] to cover a larger class of operations (e.g., median, cross

tabulation). We are also investigating the effect of different data layout

strategies, data compression, and mass storage technologies on each of these

algorithms.

3.2.2. Development of Database Machine Performance Evaluation Tools

Most of the research in the database machine area is devoid of performance anal

ysis. There are no analytical or simulation tools that are suitable for measur

ing the performance of a new design or comparing the performance of two

differnet designs. We have recently begun to develop such tools. Our basic idea

is to provide the user with an environment that includes a number of building
blocks, an easy way to specify the machine organization and workload using the

building blocks, and the ability to interface both simulated and analytic

descriptions of the behavior of particular components.

3.2.3. Filter Design

In BORA82] we evaluated alternative associative disk designs under the assump

tion that the processor used could execute any arbitrarily complex selection

condition fast enough to keep up with the rotational speed of the mass storage
device. If a conventional microprocessor is used as the basis of the filtering

el~ement, such~ an assumption is probably valid only for simple selection oper

ations and not for complex (multiple tests on multiple attributes) selection

operations.

An alternative is the use of a specialized processor that executes selection

queries in the form of a finite state automaton (FSA). Together with Francois

Bancilhon of INRIA we are presently conducting a performance evaluation of hard

ware versus software filtering.

25

3.2.4. Parallel Sorting

While BORA8OI included the evaluation of several external parallel sorting

algorithms, this evaluation did not accurately measure the loads placed by the

algorithms on the underlying mass storage system. We are presently extending the

parallel sorting models presented in BORA8O] to model I/O activity and loads.

4. Future Activities

In Section 3 we discussed a number of ongoing projects, in particular statis

tical database machines and performance evaluation tools for database machines.

Both of these projects have only recently been started and thus almost qualify

for a mention in this section. At this point we have no plans for beginning new

research work.

One event that will affect our future work is the award by NSF to the Computer

Sciences Department at Wisconsin of one of the NSF Experimental Computer Science

Research Grants. This grant will be used to construct a large multicomputer. The

facility, when operational (about 1983), will consist of between 50 and 100

processors (each processor will be a 32-bit processor with about 1 Megabyte of

main memory and have the performance of a small VAX) and a number of mass storage

units. The processors will be connected together with frequency-agile communi

cations devices that will permit us to efficiently emulate a large number of

interconnection topologies.

Our plans at this point are to use this “supercomputer” for two different

purposes. First, we intend to implement FLASH and whatever statistical database

machine we design. Second, we would like to implement various primitives to be

used by simulations, emulations, or other tools for performance analysis of

database machines as described in Section 3.2.2.

5. References

BABB79] E. Babb, “Implementing a Relational Database by Means of Specialized

Hardware,” ACM Transactions on Database Systems Vol. 4, No. 1, March 1979,

pp. 1-29.

BORA8OJ H. Boral, D. J. DeWitt, D. Griedland and W. K. Wilkinson, “Parallel

Algorithms for the Execution of Relational Database Operations”, Universi

ty of Wisconsin Computer Science Technical Report no. 402, submitted for

publication, October 1980.

BORA81a] H. Boral and D. J. DeWitt, “Processor Allocation Strategies for Multi

processor Database Machines”, ACM Transactions on Database Systems Vol.

6, No. 2, June 1981, pp. 227-254.

BORA81b] H. Boral, “On the Use of Data-flow Techniques in Database Machines”,

Ph.D. Dissertation, University of Wisconsin - Madison. Also University of

Wisconsin Computer Science Technical Report no. 432, May 1981.

BORA81c] H. Boral, D. J. DeWitt, D. Friedland, N. Jarrell, and W. K. Wilkinson,

“Implementation of the Database Machine DIRECT”, University of Wisconsin

Computer Science Technical Report no. 442, submitted for publication,

August 1981.

26

BORA82] H. Boral, D. J. DeWitt, and W. K. Wilkinson, “Performance Evaluation of

Four Associative Disk Designs”, to appear in Journal of Information Sys

tems Vol. 7, No. 1, January 1982.

DEWI81] D. DeWitt and P. Hawthorn, “Performance Evaluation of Database Machine

Architectures”, Proceedings of the 1981 Very Large Database Conference,
September 1981.

FRIE81] D. Friedland and D. J. DeWitt, “Duplicate Record Elimination in Large
Data files”, University of Wisconsin Computer Science Technical Report no.

445, submitted for publication, August 1981.

GOOD8Oa] J. R. Goodman and A. M. Despain, “A Study of the Interconnection of

multiple Processors in a Database Environment”, Proceedings of the 1980

Conference on Parallel Processing.

GOOD8Ob} J. R. Goodman, “An Investigation of Multiprocessor Structures and

Algorithms for Data Base Management”, Ph.D. Dissertation, University of

California, Berkeley. Also, Memo No. UCB/ERL M8l/33, University of

California, Berkeley, May 1981.

GOOD81a] J. R. Goodman and C. H. Sequin, “HYPERTREE: A multiprocessor intercon

nection topology”, to appear in IEEE Transactions on Computers December

1981.

GOOD81b] J. R. Goodman, “Implementing Join Algorithms Using the Hypertree
Interconnection Network”, paper inpreparation.

HAWT82] P. Hawthorn and D. J. DeWitt, “Performance Analysis of Alternative

Database Machine Architectures”, to appear in IEEE Transactions on Soft

ware Engineering January 1982.

WILK81] W. K. Wilkinson, “Database Concurrency Control in Local Broadcast Net

works”, Ph.D. Dissertation, University of Wisconsin - Madison. Also Uni

versity of Wisconsin Computer Science Technical Report no. 448, Nay 1981.

27

The ~nteIIigent Database Machine

Michael Ubell

Britten-Lee, Inc.

1919 Addison St. #304

Berkeley, Ca. 94702

Database machines have been discussed in comiiuter literature for many years. We

are just now beginning to see the first of these special-purpose machines reach

the market place. With the exception of the ICL CAFS machine MITC76], which has

been shipped in small quantities for several years, no database machines have

left the laboratory and few have even left paper. The Intelligent Database

Machine is the first of these special-purpose computers to reach the general

marketplace. It is also the first to be designed based on the idea that fast

database management, can be provided at a low cost. This paper describes the

major architectural features of the system.

The Intelligent Database Machine (1DM) provides a complete relational database

management system combined with special-purpos.e hardware to ~provide a high
transaction rate at a low cost. The 1DM is a backend machine and requires some

host intelligence to handle communication with the user. The architecture of the

machine is designed around the idea that there are a few well-defined tasks

which a relational DBMS does very often in processing transactions. These tasks

can be microcoded in a specially designed processor, the Database Accelerator.

It is fast yet inexpensive since the amount of microcode is very limited. The

memory system is also designed around data management tasks and provides

high-speed access for these tasks using standard-speed memory components, again

keeping the cost low. Another central idea in the 1DM is that a database manage

ment system is more efficient in a dedicated environment.

The 1DM software implements most of the facilities of a relational database man

agement system except for actual source-language parsing. These include validi

ty checking, protection, query optimization, access-path selection, logging and

crash recovery. The parsing of the source language query is done on the host

system. The division of tasks between the host and the 1DM at this level

provides for the most efficient use of a backend system without restricting the

user interface to a particular language. If the interface were at a lower level,

say the “fetch a record” level of the Relational Storage Interface in System R

ASTR76], the host would have to access the 1DM almost as much as it would have

to access a disk if it were to do the same work itself. The issues of recovery

and concurrency control also become more difficult at this level. For example,
to do concurrency control in a reasonable manner the host would have to declare

how much of a relation (or file) it was going to access or update so that the

backend system could determine whether to lock the whole relation or just lock

pages as they are touched. Since the 1DM does all the access-path selection it

can determine this without the need,of directives from the host.

The 1DM software takes advantage of a dedicated system environment. Operating

systems have traditionally tried to manage system resources based on a guess as

to what the application programs are likely to do next. This does not work well

for database management systems because their I/O access is very different from

most programs HAWT79]. Only the DBMS code “knows” how to optimally schedule

disk accesses. What there is of an operating system in the 1DM can be best

28

described as an anarchistic operating system. Processes do their own disk I/O

except when it is better to have it queued for latter. They request to stop run

ning at appropriate points after they have used up their time slice or have to

wait for queued I/O. These two features allow for optimal disk read ahead in

that a process will never read a page and then not process it before giving up
the CPU. If the process needs I/O which will take some time (a long seek) it will

schedule itself out and be woken up when the I/O is finished. In this way the 1DM

can overlap the CPU and I/O when it will improve the performance of the system.
The operating system keeps track of where each disk arm is and where on disk each

process needs to access the disk so that it may schedule intelligently. The DBMS

software on the other hand is in complete control of the in-memory disk buffer

ing.

The 1DM hardware consists of a high-speed bus and 6 different boards:

Database Processor

Database Accelerator

C hanne 1

Memory Timing and Control

Memory Storage
Disk Controller

The 1DM 500 has a 16-slot bus. Slots can be filled with extra memory or channels

as required for the application. One or more hosts communicate with each 1DM

Channel. The channel implements a communication protocol with the host and buff

ers data coming into and leaving the 1DM. It also translates between host data

types and the data types used within the 1DM. These two functions shield the

rest of the system from many interrupts and allow it to see just a uniform com

mand stream. The channel consists of a microprocessor, memory and hardware to

implement 8 serial (rs232c) or one parallel (IEEE-488) interfaces. Once a com

mand is accumulated in the channel it notifies the Database Processor which has

it transferred to the main memory of the system for the rest of its processing.

The Database Processor is responsible for controlling the other boards in the

system and also implements most of the functionality of the system. It uses a

standard 16-bit microprocessor chip (Zilog Z8000). It must execute about 45,000
lines of code written in a high-level language to implement the relational DBMS.

Part of this code emulates the Database Accelerator and the system can run with

out the Accelerator, but at a slower rate. The Database Accelerator is made with

standard bit-slice chips (Signetics 2900 series) and contains 4 kilo-words of

microstore. The routines in the Accelerator are mainly those involved with look

ing at data within a page from the database, in other words, the inner loop of

most processing activities. Since the processing strategy is often

single-threaded, the Accelerator also has the ability to look at data while it

is being read into memory. Once a command is given to the Accelerator it can

schedule subsequent reads from disk and look at data until it has found enough
qualifying tuples or looked at enough pages as determined by the Database

Processor.

The memory system of the 1DM provides for up to 3 megabytes of disk buffering and

additional space for user processes. The memory system can correct one-bit

errors and detect two-bit errors. This, together with address and data parity on

the 1DM bus, insures data integrity throughout the system. The memory has two

modes of operation: one is byte- and word-oriented for the Database Processor

and the other, faster mode, is block-oriented for the Accelerator and Disk Con

29

trollers.

The 1DM Disk Controller interfaces to up to four Storage Module Device disk

drives. The Disk Controller is responsible for the reliable transfer of data to

and from the disk. It implements burst-error correction and retry without any

intervention from the Database Processor. There can be up to 4 disk controllers

on the ID?1 with a total of 16 disks. While this limits the storage capacity to

about 9 gigabytes with current disk technology, the 1DM can address up to 32

gigabytes of disk storage when disk drives become denser.

We are just beginning to collect performance information on the 1DM. The Data

base Accelerator is not yet in production, but some results against a 2-megabyte
database run without the Accelerator are available. Without the Accelerator the

1DM can run in the 3-5 transactions/sec range. To retrieve a record through a

two-level index takes .15 seconds. A simple append through unique index can be

done in .2 seconds. A “debit-credit-log” transaction, involving two replaces and

an append, takes .38 seconds. The speed and proportion of usage of the Acceler

ator depend on the task being done. The Accelerator runs 15-30 times faster than

the Database Processor and the system spends from 50-90% of its time in the

Accelerator emulation routines; in addition the Accelerator reduces latency by

analyzing data as it comes off the disk. With, the Accelerator the 1DM can be

expected to reach 30 transactions/sec in some applications. Another way the 1DM

improves system performance is by off-loading the host system. In initial tests

one large main-frame computer manufacturer estimated that the 1DM could off-load

1/3 of their computer at 3 times the speed for their application.

The end-user price of an 1DM is about $70,000. The 1DM is not a complete system

and must be packaged with a host computer. With a small host computer and disks a

complete system could be as little as $120,000. Complete DBMS software packages
cost $30,000-50,000 for minicomputers and typically only run quickly on large

minicomputers. Such a software system and computer would cost about $250,000.

Off-loading the DBMS from the host frees the host for other work. The 1DM pro

vides better functionality and greater speed at half the cost.

REFERENCES

ASTR76 Astrahan, H. H., et. al. “System R: relational approach to database man

agement’t, ACM Trans. Database Systems. Vl N2 (June 1976).

HAWT79 Hawthorne, P.B., “Evaluation and enhancement of the performance of rela

tional database management systems”, Ph.D. Dissertation, University of

California, Berkeley, California, 1979.

HITC76 Mitchell, R.W. “Content addressable file store,” in Proc. Online Data

base Technology Conf., April 1976.

30

A Methodology
for the Determination of Statistical Database Machine

Performance Requirements

Paula Hawthorn

Lawrence Berkeley Laboratory

Berkeley, California

1. Introduction

This paper describes work in progress on a research topic in the design of a

statistical database machine. A statistical database is one that is used mainly
for the management and analysis of large amounts of data, where the data are

accessed and updated in large quantities. Such databases are commonly used in

applications where there is statistical analysis of the results of experiments
or surveys, hence the name “statistical databases”. Applications include socio

logical and epidemiological studies of data derived from census records or sur

veys; analysis of economic data for forecasting and modeling; management
information systems; and the analysis of data resulting from instrumentation of

physical measurements (e.g., temperature, flow, etc.).

Data management research has traditionally focused on business applications,
where the problems center around those found in business databases: e.g., trans

action management for debit/credit consistency, backup and recovery mechanisms,

concurrency control, protection, and so on. Although those problems exist in

statistical databases, the focus shifts: in a statistical database the emphasis
must be on the efficient management of large amounts of data and the calculation

of summary quantities such as means and medians. The need for compression

EGGE81J, for user models of an often unwieldy amount of data CHAN81], for spe

cial database operations JOHN81] are often more important in a statistical

database than in business databases.

In this paper we discuss the determination of the cost/performance ratio neces

sary for a statistical database machine to be a viable alternative to current

computing facilities. By database machine, we mean a specialized computing sys

tem dedicated to data management and using especially designed hardware to

increase the performance of the system. It has been shown that database machines

can be built which, because they are designed to perform a single function, are

usually more cost-effective than general purpose machines performing the same

function DEWI8l]. Such database machines commonly operate as back-end systems,
where the front-end computer handles general-purpose computing tasks and sends

all data management tasks to the back-end system. Business database machines

exist EPST79, BABB79] but there are no statistical database machines.

In HAWT81] it is shown that statistical databases have ideal performance char

acteristics for implementation within a back-end system that is dedicated to the

management of statistical data. In particular, users of a statistical database

tend to reference large amounts of data with a single instruction (e.g., “find

This work was supported by the Applied Mathematics Sciences Research Program of

the Office of Energy Research of the U. S. Department of Energy under Contract

No. W-7405-ENG-48.

31

the mean and variance of this field”, where there are 1OM bytes of data in that

field) so that the overhead to process the command in the front-end system is

much less than the time required to execute the command in the back-end machine.

It may also be true that statistical database machines can be built to cheaply

provide very high performance through the use of parallel multi-processors for

computation necessary for statistical analysis. An investigation of the design
of a statistical database machine is proceeding at the University of

Wisconsin-Nadison by the designers of the more general-purpose database

machine, DIRECT DE~I78J.

The study described in this paper is to determine the performance and

functionality necessary for a statistical database machine, in order to avoid

the situation of designing a candidate machine, implementing a prototype of it,
and later finding that it does not meet the needs of the target community. This

will be the first such study to appear in the literature on database machines.

DEWI81] points out the habit of database machine designers of designing a

machine from the perspective of using interesting hardware, rather than the per

spective of solving general problems in data management performance. The method

ology described may be useful to others who are contemplating special-function
hardware design.

To determine whether a new architecture is better than the architectures

currently in use, models of the current architectures must be developed. Section

2 defines four models of computer architecture which can be used for the manage

ment of statistical data. These models are: (1) a large central system, (2) a

network of minicomputers, (3) a network of minicomputers where some of the com

puters are dedicated to data management (that is, using software modifications

but no specialized hardware), and (4) a network of minicomputers with back-end

database machines attached. Cost/performance parameters are defined. These

parameters can be measured to determine what the cost/performance of a database

machine would need to be to make (4) a reasonable alternative to (1), (2) and

(3). Section 3 defines the study that will take place. Section 4, the conclu

sion, describes further research to be based on the results of the study.

2. Defining Parameters to be Measured

The purpose of this study is to determine the necessary cost/performance ratio

of a statistical database machine such that the use of such a machine is a viable

alternative to current computing facilities. Such a study must be done before

the machine is designed because the design of such a machine can be highly
influenced by that ratio. It is apparent that database machines can be designed
with different cost/performance ratios: the Britton-Lee machine, the 1DM 500,
sells for about $70,000; it is a single instruction, single data stream machine.

The ICL machine, CAFS, sells for close to $1,000,000. It is a single

instruction, multiple data stream machine, and for some applications is extreme

ly fast HAWT81].

Therefore the problem is to define the current computing environment, to define

parameters to measure to determine the cost/performance ratios within the cur

rent environment, to measure those parameters, and to forecast changes to those

parameters due to shifting environments. Then the necessary cost/performance
ratio can be determined. We will first define the current environment, then the

parameters to be measured. The measurement techniques and forecasts will be dis

cussed in later sections.

32

2.1 Models of Current Systems

It must be noted that statistical database management systems are not yet widely
used. Instead, scientific researchers use several different methods to analyze
and manage data: some use statistical packages that have rudimentary facilities

for data management; some use data management systems that have no statistical

analysis facilities and must move the data from the data management system,

forming temporary files on which to run statistical analysis programs; some sim

ply use the file management facilities of the operating system, writing their

own programs, using statistical libraries, to perform data analysis. There is

some use of statistical data management systems but that use is not.yet wide

spread. Therefore, when we refer to the “current working environment” we mean

the current use of the system for statistical data management and analysis, not

the current use of statistical data management systems per se.

The following four models are not the only alternatives in computing environ

ments for statistical analysis of large data sets. They are, however, represen

tative of current or easily possible environments. The proposed models for

computer systems are listed below.

2.1.1 Large Central Systems

One of the most common computer architectures in use currently is the large,
central system. This is shown in Figure 1. In the Large Computer System (LCS)
the computer is timeshared among many batch and interactive users. The major

secondary storage devices are disks, with other devices, such as tape drives

and/or automatic tape libraries attached to the system.

2. 1 .2. Minicomputers

A second approach to providing computing facilities is to purchase separate

minicomputer systems for separate applications. This is shown in Figure 2. The

minicomputer network that we are modeling is one based on our experience at

Lawrence Berkeley Laboratory. In systems common at LBL, there is a loose con

nection between some of the minicomputers. Often the minicomputers are bought
for different applications and by different departments according to varying

requirements, so the computers tend to be made by different manufacturers; even

those made by the same manufacturer may be running different operating systems.

Additionally, a given application may support a number of homogeneous computers
that are tightly coupled with each other, but loosely coupled to the rest of the

laboratory. There are also applications where the minicomputer system is

stand-alone due either to protection and privacy requirements, or because there

is no perceived need to net it to other minicomputer systems.

33

Figure 1. Central System

Figure 2. General-Purpose I’linicomputers

Department A’s minicomputers Department B’s mini

mini

I computer
I system I

network mini

icomputerl-
link system

mini

- I computer
I system

Department C’s mini

Stand-alone system

mini

I computer
system

2.1.3 Networks with Dedicated Database Systems

The two systems described above are those that commonly exist; the third system
is one that may be very useful. It is a network of minicomputers, where some of

the minicomputers are dedicated strictly to running the data management system.
This is shown in the following figure.

many terminals

term I

IUi~._~
II

I term.I

/

/

/

term.

LARGE CENTRAL

COMPUTER

many disks

I~I
Idisk I

Li

Idiskl

---Idiskl

L~J

net

link

34

Figure 3. Network with Specialized Machines

I I I I

mini network Idatabasel net I mini

I computer~ system I Icomputerl
system I link I link system

I

I

I link I link I link

I I 1

database I network mini net mini

I system I computerj cornputer~
I link I system I link I system

I_____________________________________ I I I I

The dedicated systems would include no specialized hardware; however, operating
systems would be modified to more efficiently interact with the data management
system. There are several advantages with the above approach. These are listed

in the following table.

Table 1. Advantages of Dedicated Systems

1. Operating system Efficiency
It has been observed that if a computer system is running only a data man

agement system, the operating system can make use of special information

available from the data management system HAWT79, STON81]. The incorpo
ration of such knowledge into the operating system will increase the effi

ciency of the system as a whole.

2. Data Sharing

Centralizing the databases on a few computer systems means that the users

can easily share data.

3. Lower Cost of Software

The data management system resides on only a few machines, making it easier

to maintain. Also, vendors charge per CPU, so the fewer systems there are

that have the data management system installed, the lower the cost.

The dedicated system architecture is to be modeled because it is a reasonable

alternative to the expense of developing specialized hardware.

2.1.4. Statistical Database

The fourth architecture to be explored is the use of specially designed database

machines. It is proposed that these machines be back-end systems; their use is

shown in Figure 4.

35

Figure 4. Network with Database ~1achines

database I
I machine

I link

database I
I machines~

link I

mini network

I computer
system link

I link

mini net

computer I
system link

I link

mini

--~computer~
system I

I link

mini network

I computer I
I system I

net I mini I
Icomputeri

link I system I
~~1

The above architecture includes a network of minicomputer systems, some of which

are attached to statistical database machines.

2.1.5 ~1odel Choice

The following section justifies the choice of the particular models above. The

larger central system (LCS) and the network of minicomputers were chosen because

those two models are in common use. The use of dedicated minicomputers for data

management (model 3) is included because such systems may have a lower

cost/performance ratio than systems that include database machines, and should

therefore be included in comparisons. We exclude making an LCS a dedicated data

base machine because the expense of an LCS is such that it appears to be prohibi
tive to dedicate one to data management.

The fourth model, the network of minicomputers with statistical database (SDB)

machines attached to some, is included because that appears to be the most rea

sonable architecture to develop at this time. In order to achieve high efficien

cy at low cost, the SDB machines are back-end systems that cannot directly
communicate with users but must be front-ended by other computers. A design
where the front-end system is a minicomputer is chosen, rather, than using an

LCS as the front-end, for development purposes: for communications between the

two systems, it is sometimes necessary to have dedicated use of the front-end

system. The cost of using an LCS system for that purpose would be prohibitive at

this time.

2.2 Parameter Definition

The basis for this study is strictly cost/performance. It is assumed that the

same functionality can be provided across all the models, and that the only rea

son to use an SDB machine is that it has a lower cost/performance ratio than the

36

mini

Icomputeri
link system

.1

other models. This is a simplifying assumption; in reality, decisions are made

to use database machines based other criteria, such as the ability to connect

the machines to heterogeneous systems, etc. Such functional requirements should

be the basis of other studies.

The parameters to be measured are listed below.

2.2.1 Cost

Selling price is the cost associated with each system; this includes the selling

price of software (data management and operating systems) as well as hardware.

Selling price is used, rather than raw component cost, because the selling price

truly reflects the cost to the target population. Additionally, selling price
reflects the cost of development, which must be included, especially in the pro

posal of new systems.

2.2.2. Performance

The performance of a system is defined as the ratio of the number of users and

the response time for an “average” job step:

P=n/r
P = performance
n = number of users

r = response time for average job step

The maximum performance for a given system will be used (i.e., the values of i~

and r such that the performance is maximum). For example, if an LCS has maximum

performance at 200 users, response time at 10 seconds for an average job step, P

= 20. Then, if the LCS costs $2,000,000 (hardware + software), the

cost/performance ratio is 100,000. If the same “average job step” is run on a

$300,000 (hardware + software) minicomputer, the maximum performance might be

obtained at 20 users, with a response time of 20 seconds. Then the

cost/performance ratio is 300,000/1 = 300,000.

2.2.3. Average Job Step

The average job step is defined by measuring current use of existing systems for

the purpose of statistical data analysis and management. An average job step is

a unit of work: a differentiable portion of a job which can be identified by the

user as performing a given high-level task and perhaps even expressed in a sin

gle statement in an SDB query language. The method of determining the average

job step is discussed in Section 3.

2.2.4. Loading Parameters

To estimate the performance of the nonexistent model (3) and to aid in guiding
the development of the SDB machine, the loading parameters of the average job

step will be measured for existing systems. These include:

d = number of disk references

cpu = amount of CPU time required

37

mem = amount of main memory required

3. Measuring the Parameters

The methodology for this study is as follows:

1) Determine average job step.

2) Measure it on current systems (models (1) and (2)) to determine their

cost/performance ratios, and to disco~er system loading factors.

3) Use system loading factors to forecast the cost/performance ratio of

(3).

4) Based on the above cost/performance ratios, conclude what the

cost/performance ratio of model (4) must be.

The key problem is a statistically valid approach to determining the “average
job step”. This will be accomplished by measuring the current use of the two

existing systems. A combination of approaches will be used: user surveys, and

performance analyses of some of the current computer systems.

The test bed will be the Lawrence Berkeley laboratory. With 3000 workers in many
areas of scientific research, LBL provides a diverse environment which appears
to reflect the general use of computing for the analysis of data. Determining
the cost/performance ratio for an SDB machine that would make it an alternative

to current systems at LBL will fix the result for at least one laboratory. The

results must be compared with others, of course, to identify possible anomalies.

To determine the average job step:

1) Randomly sample computer users at the laboratory. Ask them to fill out ques
tionnaires concerning their use of the computing systems. A part of that

questionnaire is a list of 20 candidate SDB “job steps”. The user is asked

which of his/her computer jobs contain which of the job steps, and which

systems those jobs regularly run on. Some jobs will be found that are com

posed entirely of job steps.

2) Using the list of jobs identified in (1), measure the loading factors and

response times of the job steps. Insure that there is a large enough set of

steps at this point that standard statistical tests can be used to determine

the average job step.

It can be expected that step 1 above is an iterative process in that the “candi
date job steps”, which are our ideas of the basic processes involved in the

analysis and management of large data sets, will not necessarily correspond to

what users regard as the basic job steps. Therefore, the questionnaire may have

to be redesigned several times to capture the information needed.

Once the users have identified which jobs contain which job steps, the response
times and system loading patterns of the job steps can be determined from exam

ining logging facilities for most of the systems to be studied. Where those

facilities do not exist, measurements will have to be taken.

The purpose of this study is to obtain the cost/performance ratio for the SDB

machine, not to define a detailed performance profile for statistical data man

38

agement queries. Therefore, extensive tracing facilities for finer determi

nation of loading factors according to subprocesses within the job step will not

be used for this study. It may be necessary to have such information when pre

dicting the cost/performance ratio of a given SDB machine architecture, since,

as found in HAWT81, DEWI81I the performance profiles of applications greatly
influence the utility of a given database machine architecture. Instrumentation

and tracing of the SOB job steps may then be a logical extension of this study.

At the end of steps (1) and (2) above, there may be a single, “average job step”
which has associated with it an average CPU time on each of two systems (models

(1) and (2)), an average number of I/O requests, and an average respoiise time

from each of the two systems. This result would be very nice, since such a single

step would be easy to model analytically, and is conceptually easy to deal

with. However, such an “average” may mean nothing since the variation may be

huge - different job steps may have radically different performance patterns. In

that case, a suite of job steps will have to be devised, with each included job

step indicative of a certain type of process used in the statistical aiialysis
and management of data. This job-step suite can then be used in the place of a

single average job step.

4. Conclusion

This paper has described work in progress on the design of a statistical data

base machine. A methodology for the exploration of the necessary

cost/performance ratio for the database machine has been specified. This method

ology is: (1) determine the target application for the database machine; (2)
find a candidate user population for that machine; (3) devise tests to quantify
the user population’s current computing usage; and (4) forecast the necessary

cost/performance ratio based on its current value.

Such a methodology does not account for a change in computer usage due to a

change in functionality. That is, if a functionally complete statistical data

management system existed, and if that system were very fast due to its imple
mentation on a special-purpose database machine, the user population would prob

ably change drastically due to the change in environment. In simply surveying

present use of a computing system, it is difficult to determine if a given oper

ation is not performed often because it is not needed, or because it is too

hard, inconvenient, or slow on the current system.

Conversely, it is difficult to forecast the actual use of a new system, such as

an SDB machine, if its use means extensive user re-training. The users of sta

tistical databases may not wish to change from the systems they are familiar

with because they may resist having to change systems.

Further research is required to determine how such changes in the user popu

lation should be reflected in the study of the design of an SOB machine.

39

REFERENCES

BABB79] Babb, E., “Implementing a Relational Database by Means of Specialized
Hardware”, ACM Trans. on Database Systems, Vol. 4, No. 1, March 1979, pp.

1-29.

BRIT8O} Britton-Lee, Inc. “1DM 500 Intelligent Database Machine Product

Description”, Britton-Lee Inc., 90 Aibright Way, Los Gatos, Calif., 95030.

CHAN81I Chan, P., and A. Shoshani, “SUBJEC1~: A Directory Driven System for

Organizing and Accessing Large Statistical Databases”, Proc. VLDB, 1981.

DEWI78] DeWitt, D.J., “DIRECT - A Multiprocessor Organization for Supporting
Relational Data Base Management Systems”, Proc. Fifth Annual Symposium on

Computer Architecture, 1978.

DEWI81J DeWitt, D.J. and P. Hawthorn, “A Performance Evaluation of Database

Machine Architectures”, Proc. VLDB, 1981.

EGGE81] Eggers, S., F. Olken and A. Shoshani, “A Compression Technique for

Large Statistdcal Databases”, Proc. VLDB, 1981.

EPST8OJ Epstein, R. and P. Hawthorn, “Design Decisions for the Intelligent
Database Machine”, Proc. 1980 NCC, AFIPS Vol. 49, pp.237-241.

HAWT79] Hawthorn, P. ttEvaluation and Enhancement of the Performance of Rela

tional Database Management Systems”, Memo. no. M79/70, Electronics

Research Laboratory, Universtiy of California at Berkeley.

HAWT81] Hawthorn, P. “The Effect of Target Applications on the Design of Data

base Machines”, Proc. SIGNOD, 1981.

JOHN81] Johnson, R. “Modelling Summary Data”, Proc. SIGMOD, 1981.

ESTON81] Stonebraker, H. “Operating System Support for Database Management”,
Commun. ACM, July, 1981.

‘Ii
j

40

The NON—VON Database Machine:

A Brief Overview1

David Elliot Shaw

Salvatore J. Stolfo

Hussein Ibrahirn

Bruce Hillyer

Department of Computer Science

Columbia University

Gio Wiederhold

J. A. Ardrews

Department of’ Computer Science

Stanford University

Abstract

The NON—VON machine (portions of which are presently under construction in the

Department of Computer Science at Columbia, in cooperation with the Knowledge
Base Management Systems Project at Stanford) was designed to apply
computational parallelisn on a rather massive scale to a large share of the

information processing functions now performed by digital computers.

The NON—VON architecture comprises a tree—structured Primary Processing
Subsystem (FF5), which we are implementing using custom nMOS VLSI chips, and a

Secondary Processing Subsystem (SPS) incorporating modified, highly
intelligent disk drives. NON—VON should permit particularly dramatic

performance improvements in very large scale data manipulation tasks,
including relational database operations and external sorting. This paper
includes a brief overview of the NON—VON machine and a more detailed

discussion of the structure and function of the PPS unit and its constituent

processing subsystems.

~This research was supported in part by the Defense Advanced Research

Projects Agency under contract N00039—8O—G—O132.

41

1 Introduction

Recently, a great deal of commonality has become apparent anong the

fundamental operations involved in a surprisingly large number of

superficially disparate computational approaches to high level database

management. Although these operations have been formulated in different ways

by different researchers, their essential, characteristics are captured by the

primitive operators of the relational algebra defined by Codd 1972]. ~mong
these operators are the set Ei~eoretic operations union intersection, and set

difference the relational operators equi—join and projection,~I~d seveF~T

dther operations derivable from these five.

Although the best sequential algorithms known for these operations are still

quite inefficient on a von Neumann machine, particularly in the case of very

large databases, we believe it possible to implement alternative machine

architect~ures supporting the highly efficient, but cost—effective, parallel
execution of each of these relational algebraic operations, along with a

number of’ other operations of practical importance, including large—scale
external sorting. It is this belief which motivated the design of’ the NON—VON

database machine.

NON—VON comprises a Secondary Processthg Subsystem (SPS), based on a bank of

“intelligent” rotating storagé~iTc~ and designed to provide very high
access and processing bandwidth, and a smaller, but faster Primary Processing

Subsystem (PPS), again utilizing a high degree of parallelism, irw7~iTcIT€Ii~

~e1ational algebraic operators may be very quickly evaluated. Transfer

between the two devices is based on a process of hash partitioning which is

performed entirely in hardware by logic associated withT the individual disk

heads, and which divides the argument relations into key—disjoint buckets

suitable for “internal” evaluation. The top—level organization of the NON—VON

machine is illustrated in Figure 1.1.

primary
buffer

H I secondary

processing
and

H 1 processing

subsystem
control

‘ I subsystem

H I
(PPS) unit

—I____
(SPS)

Figure 1 .1 Organization of the NON—VON Machine

42

This paper examines the organization and behavior of the NON—VON machine,
illustrating the essential mechanisms involved in its operation in database

management applications. After tracing the theoretical origins of the NON—VON

architecture in the next section, we focus in Section 3 on the central

elements of the PPS unit. The most important functions of the PPS are

described in Section LI, while the fifth section illustrates the way in which

these functions are employed in the rapid parallel execution of the most

“difficult” relational algebraic operations. Sections 6 and 7 outline the

organization of the Secondary Processing Subsystem and illustrate its use in

the external evaluation of relational database operations.

2 Theoretical Foundations

The theoretical basis for the NON—VON architecture was established in the

course of a doctoral research project at Stanford Shaw, 1979], and was

accompanied by a mathematical analysis of the attainable time complexity of

the equi—join and projection operators on such a machine. The architecture

was shown to permit a rather surprising O(log n) increase in efficiency over

the best evaluation methods known for a conventional computer system, without

the use of redundant storage, and using currently available and potentially
competitive technology. In many cases of practical import, the proposed
architecture was also found to permit a significant improvement (by a factor

roughly proportional to the capacity of the Primary Processing Subsystem) over

the performance of previously implemented or proposed database machine

architectures based on associative secondary storage devices.

Subsequently Shaw, 198Oa], algorithms for evaluating the selection,
restriction, union, intersection and set difference operators (each with

comparable or more favorable performance improvements) were also described,
and the key procedure on which the architecture is based was contrasted with a

related, but in this application, inferior method based on an associative

sorting technique described earlier in the literature. More recently, we have

been studying several highly efficient, linear expected time algorithms for

external sorting on the NON—VON machine.

3 Organization of the Primary Processing Subsystem

The PPS unit functions as the site of what we call internal evaluation of the

relational algebraic and other operations performed by NON—VON. ~rrowing
from the terminology of sorting, we use the term “internal” to distinguish
that case in which the operands are small enough (or can be broken into small

enough pieces) to fit entirely within the primary storage device —— in our

case, the intelligent PPS unit; “external” evaluation refers to the case where

the data exceeds the capacity of the PPS, and must be selectively partitioned
and transferred from SPS to PPS.

43

For purposes of’ this discussion, the PPS may be thought of as composed of a

large number of’ very simple processing elements (on the order of several

thousand, if a full—scale prototype we~ to •be built using 1981 technology,
and between a hundred thousand and a million during that period during which

NON—VON—like machines would in fact be targeted for practical use)
interconnected to form a complete binary tree. With the exception of minor

differences in the “leaf nodes”, each processing element (PE) is laid out

identically, and comprises:

1. A single common data bus

2. A very simple (and area—efficient) one—bit—wide ALU capable of

manipulating a ~all set of local flag registers

3. An intelligent memory/comparator unit containing a ~nall amount

(perhaps 32 to 6L1 bytes) of local random—access storage, and

capable of arithmetic comparisons (including equality) between

values taken from the bus and from specified memory locations

The top—level structure of a single PE is illustrated in Figure 3.1.

By contrast with a conventional microprocessor, no finite—state control logic
is incorporated within the constituent PE’s. Instead, a single programmable
logic array (PLA) associated with each chip services all PE’s on that chip, as

described below.

The PPS will be implemented largely using two custom—designed VLSI chips,
which we call the PPS Bottom Chip and PPS Middle Chip Bottom Chips will each

contain a subtree of the full PPS tre&, and will thus embody 21<_i constituent

PE’s for some 1< depending on device dimensions. Rough preliminary estimates

based on 2.5 micron design rules suggest that a value of k 3, corresponding
to 7 PE’s per Bottom Chip, might be feasible for our initial prototype.
Within a single Bottom Chip, the PE’s will be configured geometrically
according to a “hyper—H” embedding of the binary tree Browning, 1978], as

illustrated in Figure 3.2.

Because of its fixed~ I/O bandwidth requirements, independent of the size of

the embedded subtree, the realizable capacity of the PPS Bottom Chip will

increase quadratically with inverse changes in minimum feature width, thus

permitting dramatic increases in the computational power of the NON—VON PPS

unit as device dimensions are scaled downward with continuing advances in VLSI

technology. (During the target time frame for a production version of a NON—

VON—like machine, a 1< value of 7 or 8, corresponding to several hundred

processing elements per PPS Bottom Chip, seems feasible.)

The PPS Middle Chip, on the other hand, will embed 2m_1 “internal nodes” of

the PPS tree (where rn is a constant determined by pino~pt limitations, and

independent of device dimensions)
, serving to combine 2m~ subtrees, embedded

either in separate Bottom Chips or (recursively) in lower—level subtrees

44

to parent PE

access

memory

Figure 3 1 Components of a Single Process thg Element

rooted in other Middle Chips, into a single complete binary subtree. Because

the number of processors per Middle Chip will he constrained by pinout

limitations, and not by by minimum feature width, the capacity of the PPS

Middle Chips will not benefit from the effects of scaling as will the Bottom

Chips. This (provably unavoidable) I/O bandwidth limitation, however, will

result in only a ~na1l, constant waste factor; the tree—structured intra— and

inter—chip interconnection topology of the NON—VON Primary Processing

Subsystem is in fact extremely well suited to the effects of future downward

scaling.

random

(32 bytes)

comparator
unit

bit-wide

•ALU

to left child PE to right child PE

45

Figure 3.2 Structure of the PPS Bottom Chip

L~ Function of the Primary Processing Subsystem

The NON—VON PPS functions as a SIMD (Single Instruction stream, Multiple Data

stream) processing ensemble, with all PE’s executing the same operation on

different data at any given point in time. The tree structured inter—PE bus

structure functions in three distinct modes in the course of such execution:

46

1. Global broadcast by any PE to all other PE’s in the PPS

2. Physically adjacent neighbor communication (to the Parent, Left

~ffi1d and Right Child PE within the physical PPS tree

3. Linearly adjacent neighbor communication (to the Next or Previous

~E in an arbitrary linear logical sequence)

The global broadcast function supports the rapid (especially as VLSI device

dimensions scale downward) parallel communication of’ instructions and data to

the individual PE’s as required for SIMD operation, and is employed for most

I/O operations. In some algorithms (real—time parallel sorting, for example),
data is passed between parent and child PE’s. Th others (associative matching
of arbitrary—length tuples, for instance), data and control information is

exchanged with the immediate predecessor or successor PE in some predefined
total ordering. Several mappings between the linear logical sequence and the

hierarchical physical topology of the PPS are possible, but are beyond the

scope of this paper.

The NON—VON PPS instruction set supports a number of operations involving
associative retrieval, arithmetic comparison, logical manipulation of local

(to the individual PEs) flags, various kinds of I/O, and a number of

incidental functions. While space does not permit a discussion of all these

functions, two associative operations executed by the PPS hardware are of

sufficient importance in the implementation of database management
applications to merit special attention here.

In performing associative operations, the NON—VON PPS unit functions as a

relatively fast, but inexpensive content—addressable memory which performs
what is essentially the relational select ~6~~€ion in a short, fixed

amount of time, independen€~6f the size of the argument relation. In both of

the associative operations under consideration, a partial match criterion—

that is, a set of attribute/value pairs which mi~€15è satisfied by all

“matching” tuples——is broadcast in parallel to all PE’s. NON—VON is then

capable of either

1. Associative marking Simultaneously setting a flag bit in all PE’s

associated~(in a manner to be explicated shortly) with a matching
tuple, or

2. Associative enumeration Reading successive matching tuples out of

the PPS unit (and in~the control module) irredundantly, with each

new tuple produced in a ~nall, fixed anount of time.

For simplicity, we may assume (at least in the context of this paper) that a

given PE will store at most one tuple. The converse, however, is not the

case: a single tuple, or even a single attribute value, could well exceed the

capacity of one PE, there being no restriction on the length of either. Such

tuples are stored in linearly adjacent FE’s. Inter—FE propagation of the

matching activity is effected by passing flags in parallel from each

“successful—so—far” PE to its linear successor.

47

At the end of an associative marking operation, every PE that contains a

matching tuple (or, in the case of large tuples, every FE in which a matching
tuple starts) will have one of its internal one—bit flags set to 1. The

corresponding register in all other FE’s will be set to 0. In some cases,
associative marking tnay be followed by another parallel operation involving
this “mark register”; in other applications, however, it may be necessary to

output all marked tuples (or the relevant portions thereof) through the root

of the tree in an arbitrary sequential order, using the global communication

bus. This associative eni.neration operation is supported by a simple and

elegant rnultI~1e match resolution scheme which uses the tree—structured

cotrmunication pat1€~’ery rapidl~ clear the mark register in all but an

arbitrary “first” marked FE.

It is expected that the NON—VON PPS architecture will perform associative

matching operations extremely rapidly——in fact, at a pace limited largely by
the speed at which the partial match specification itself can be input.
Through the exploitation of recent architectural advances applicable to VLSI

systems, however, along with the careful balancing of storage capacity against
distributed intelligence, we hope to bring the cost of PPS storage to within a

small constant multiple of the price of an equivalent amount of ordinary
random access memory implemented using comparable technology.

5 Internal Evaluation of the Relational Algebraic Operators

As noted above, the PPS unit’s associative marking and enixneration operations
may themselves be regarded as implementations of the relational selection

operator, which returns a relation consisting oV all tuples satisfying a

particular attribute—value specification. Selection, though, can be performed
entirely within NON—VON’s Secondary Processing Subsystem, obviating the need

for transfer to, and processing within, the PPS. The importance of the

associative marking and entnieration operations instead derives from its use as

a building block in the implementation of the “difficult” operations (project,
equi—join, and the set theoretic operations, for example) which, in contrast

with relational selection, can not be evaluated by the SF5 alone. While a

detailed exposition of the algorithms for each of these “difficult” operations
is beyond the scope of this paper, the essential behavior of the NON—VON PPS

and SPS units may be illustrated by considering a single, particularly
demanding operation which has a particularly simple realization within the

NON—VON FF5: the equi—join.

The join operation may in general be extremely expensive on a conventional von

Neuiiann machine, since the tuples of the two relations must be compared for

equality of the join attributes before the extended cartesian product of each

group of matching tuples can be formed. In the absence of physical clustering
with respect to the join attributes (whose identity may vary in different

joins involving the same relations), joining is most commonly accomplished on

a von Neumann machine by pre—sorting the two argument relations with respect
to the join fields. The order of the tupies following the sort is actually

48

gratuitous information from the viewpoint of the join operation. From a

strictly formal perspective, the requirements of a join——that the tuples be

paired in such a way that the values of the join attribute match——are

significantly weaker than those of a sort. The distinction is moot in the

case of a von Neumann machine, where no better general solution to this

pairing problem than sorting is presently I~own. ~ the NON—VON machine, on

the other hand, we are able to exploit the weaker requirements of the join
operation to eliminate the need for pre—sorting in favor of a more

straightforward associative approach.

The algorithm for the internal equi—join on the NON—VON machine is in fact

extremely simple; it may be regarded as an associative version of the naive

join algorithm in which each tuple in the source relation in turn is compared
with all tuples of the target relation. c~ a von Neumann machine, this naive

algorithm has quadratic (in the size of the argument relations) time

complexity——specifically, the number of sequentially executed steps is equal
to the product of the combined cardinalities of the source and target
relations. Within the NON—VON PPS, however, only the source tuples are

processed sequentially, since a given source tuple may be compared with all

target tuples in parallel using the associative marking operation introduced

earlier.

In applications where the result relation is to be retained in the PPS (as,
for example, in the case where the join is to be followed in’mediately by
another parallel operation on the result relation), the number of steps is

thus equal to the cardinality of the source relation, and is independent of

the cardinality of the target relation. Where it is necessary to sequentially
output the result relation (either to the SPS, or to some system external to

the NON—VON machine), a number of additional steps proportional to the size of

the result relation is required; the complexity of our algorithm, however,
remains linear in the cardinalities of the source and result relations.

It should be noted that, in the worst case (in which the join attributes of

both argument relations have only a single value, so that the join produces
the full extended cartesian product of the two relations as its result), the

result relation will itself contain a number of tuples equal to the product of

the cardinalities of the two argument relations. As must be the case for any

algorithm involving fixed—bandwidth sequential enumeration of the result

relation, the NON—VON internal join thus has a worst case which is quadratic
in the size of the argument relations considered alone

Our analysis of time complexity in terms of the size of the argument and

result relations is motivated by empirical observations involving the

relationship between argument and result cardinalities in realistic relational

database applications. In practice, the degenerate case of a single—valued
join appears to appear so infrequently by comparison with joins in which the

argument and result relations are of roughly comparable size that the

argument/result model seems to better reflect performance differences of

practical significance. Under the assumptions of this model, the NON—VON

internal join algorithm offers a very significant advantage over the best

algorithms I~own for a join on a von Neumann machine.

49

6 Organization of the Secondary Processing Subsystem

The SPS unit is based on a potentially large bank of highly intelligent
circulating mass storage devices. Either single— or multiple—head disk drives

are suitable as a basis for the NON—VON PPS unit, but it is assumed (in the

interest of economy) that the number of tracks considerably exceeds the number

of read/write heads——that is, that “ordinarytt, as opposed to “head—per—track”,
drives are employed. Each head must have its own sense amplification
electronics, permitting all heads to simultaneously read their respective
tracks.

A small amount of hardware is associated with each disk head. The following
capabilities are assuned for this “per—head” logic. First, it must be

possible to examine an arbitrary attribute in each tuple that passes under the

associated head, comparing each such value against a single specified pattern
value. As in the case of many earlier database machine designs (RAP

Ozkarahan, Schuster and ~ith, 1974], CASSM Su, Copeland and Lipovski, 1975]
and DBC Baum and Hsiao, 1976], for example), the SPS is able to collect for

output all tuples found to match, or to bear some specified arithmetic

relationship (less than, less than or equal to, etc.) to the given pattern
value.

In addition, though, the NON—VON SPS is capable of sequentially computing a

hash function for which the resulting hashed value falls within the range 0,
IL (Sequential computation of an exclusive or function is sufficient, and

requires little additional logic.) Tuples~Wi~se selected values hash to

within specified subranges of the 0, 1] interval may be dynamically
identified and transferred to the PPS unit through the Buffer and Control

Unit.

7 External Evaluation of the Relational Algebraic Operators

In the case where the arguments to the join exceed the capacity of the PPS

device, NON—VON attempts to partition the argument relations into a set of

key—disjoint buckets the vast majority of which are small enough to fit

éntirely within the PPS. A set of buckets is called key—disjoint if no join
value is represented in more than one bucket. In general, one such bucket

will then be transferred into the PPS during each successive revolution of the

disk—based SPS, and an internal join performed on the subrelations in

question.

To accomplish the partitioning, the 0, 1] range of the hash function is

divided into a number of equal subintervals somewhat larger than the combined

size of the argument relations in PPS—fulls. Unless the argument relations

consume an unusually large share of the total amount of storage available

within the system, it is possible to associatively examine, and perform simple

processing on, all tuples in both argument relations within a single disk

50

revolution. During the first revolution of the SPS drives, all disk heads
hash each join value passing beneath them, and those tuples whose join values

hash into the first subinterval are transferred “on the fly” into the PPS for

internal evaluation. Thples hashing into the second interval are transferred

during the second revolution, and so on. Even after recovery from

(statistically unlikely) “bucket overflows”, the hash partitioning procedure
preserves the linearity of the internal join algorithm in the case of large
argument relations.

References

Baum, Richard E. and Hsiao, David K., “Data Base Computers——a Step Towards

Data Utilities”, IEEE Transactions on Computers v. C—25, December, 1976.

Browning, Sally, “Hierarchically Organized Machines”, in Mead, Carver and

Conway, Lynn, Introduction to VLSI Systems Addison—Wesley, 1978.

Codd, E. F., “A Data Base Sublanguage Founded on the Relational Calculus”,
Proceedings of the 1971 ACM SIGFIDET Workshop on Data Description, Access and

~SrT~~cTaff&~T ~~

Codd, E. F., “Relational Completeness of Data Base Sublanguages”, in Rustin,
Randall (ed.), Courant Computer Science Symposium 6: Data Base Systems
Englewood Cliffs, New~

Gallaire, Herve, Minker, Jack, and Nicolas, J. M., “~r~ Overview and

Introduction to Logic and Data Bases”, in Gallaire, Herve and Minker, Jack,
Logic and Data Bases New York, Plenum Press, 1978.

Kaplan, S. Jerrold, Cooperative Responses from a Portable Natural Language
Database Query_SystenP~~i }lñer’Cof ~o~ipt~ter and Tnformation

Science, ~if’Y~rsity of Pennsylvania, May, 1979.

Knuth, Donald E., The Art of Computer Progran~ning, vol. 1: Fundamental

Algorithms Addison—~é ié~7 ~

Lee, C. Y. “Intercommunicating Cells as a Basis for a Distributed Logic
Computer”, Proceedings of the AFIPS 1962 Fall Joint Computer Conference
Baltimore,~

Ozkarahan, Esen A., Schuster, Stewart A., and Sevcik, K. C., “A Data Base

Processor”, Technical Report CSRG—143, Computer Systems Research Group,
University of Toronto, September, 197~4.

Shaw, David Elliot, “A Hierarchical Associative Architecture for the Parallel

Evaluation of Relational Algebraic Database Primitives”, Stanford Computer

51

Science Department Report STAN—CS—79-.778, October, 1979.

Shaw, David Elliot, “A Relational Database Machine Architecture”, Proceedings
of the 1980 Workshop on Computer Architecture for Non—Nuneric Processir~~
~ TA1~fr~€~J1~T joint is~é of ACM

SIGARCH, SIGIR and SIGMOD publications.)

Shaw, David Elliot, Knowledge—Based Retrieval on a Relational Database

Machine Ph.D. Thesis, ~ Science, Stanford University,
1980a.

Su, Stanley Y. U., Copeland, George P., and Lipovski, G. J., “Retrieval

Operations and Data Representations in a Content—Addressed Disc System”,
Proceedings of the International Conference on Very Large Data Bases
Framir~gF~a~~ ~mr~Tf9’f5.

- - _____

Wiederhold, Gio, Kaplan, S. Jerrold, and Sagalowicz, Daniel, “The Knowledge
Base Management Systems Project”, ACM SIGMOD Record 1981.

52

TI-IE SYSTEM ARCHITECTURE OF A DATABASE MACHINE (DBM~

S. Bing Yao, Pu Tong, and You—Zhao Sheng

Database Systems Research Laboratory

University of Maryland

College Park, Maryland 20742

1. Introduction

Recent ad-iances in computer hardware technology have made it possi
ble to design special processors for dedicated functions. The internal

organization of a data base system contains many concurrent operations
which may be implemented by dedicated hardware that functions con

currently. This will have the advantage of reduced system complexity
and increased performance through parallel processing.

Database machines using conventional technology have been proposed

DEW79,EAH8O]. In this paper we will briefly describe the architecture

for a new approach to database machine DBM. Figure 1 illustrates the

use of DBM in a local network environment. The DBM nodes are the back—

end machines that manage the data. The workstation nodes are the

front—end processors that interact with the user. Data base access

requests can be expressed by user in languages such as SEQUEL or QUEL

AST76,SWK76]. These queries are parsed by the workstations and the

resulting query packets are sent to the appropriate DBM nodes. The DBM

commands contained in the query packets cause the DBM to send instruc

tions to its special processors to initiate query processing. When the

processing is completed, the query result is sent by the DBM to the

appropriate workstations in result packets.

We assume that the data base consists of a collection of relations

and the query received by the DBM is encoded in relational calculus. In

an earlier paper YAO 79], we have shown that relational queries can be

decomposed into a series of simple data base operations including selec

tion, projection and join. These operations will be implemented in

hardware in the proposed DBM architecture.

Special processors to perform selection and projection have been

proposed in other database machine. For example, in CAFS a micro

programmed processor evaluates the data stream from the secondary

storage for satisfying a given query. The result is coded in a one—

dimensional array MAL79]. In PAD 791 a logic matrix structure is pro

posed to sequentially evaluate Boolean functions. The “systolic” array

KUN 801 processes the selection operation using a pipelining algorithm.
Other proposals include HAN77,LSZ78]. In our DBM system, selection

operations are processed by a “data filter” which extends the concepts
of these previous designs. We will briefly discuss the architecture of

our “data filter” in Section 3.

53

Several designs for join processors were also proposed. The “sys
tolic” array join processor (KUN 80] is basically a one—dimensional pro

cessor array. The two relations to be joined are piped into the array

from two opposite directions. The two pipelines move in synchronous,
one step for each time unit. Join processing takes place when tuples
from different relations meet in a join processor element. The join

processor array in DBC MEN 81] is arranged in a circular fashion. One

of the relations to be joined is partitioned and loaded into the

memories of the join processors. The other relation to be joined is

then piped into the join processors. Except for the use of associative

memories and hash functions, this approach is basically the same as the

systolic array. In the bit—sliced associative join processor of DIALOG

WAY 80], the join values from one of the relations to be joined are

stored in a bit—sliced associative memory. The tuples from the other

relation are processed serially by matching their join values in bit—

slice. All of these three designs are, in fact, variations of one—

dimensional processor arrays. In this paper we will introduce a two—

dimensional join processor array used in DBM.

It should be pointed out that, contrary to the belief of some

researchers in this field (see e.g., (DEW 81]), the DBM components using

array processors can be readily implemented with existing VLSI technol

ogy. A small—scale prototype of DBM is presently being implemented.

Experiments and performance of the system will be reported in forthcom

ing papers.

2. DBM System Architecture

The general architecture of the system is similar to a conventional

computer with the exception of a few additional processors. Figure 2

shows that the system is composed of memory (N), central processor (CP),
direct memory access control (DMA) ,

data filter (DF), and join processor

(JP). The disk controller (DC) is interfaced to the system by the data

filter and direct memory access controller. Communication with the net

work is performed by the communication controller (CC).

The query sent to the DBM is assumed to be represented in a query

tree structure and coded in a standard notation. For example, the fol

lowing query

RETRIEVE Name

FROM Employee
WHERE (salary > avg (salary)) and (dept = CS)

will be represented in the tree structure as shown in Figure 3. Multi

ple query trees may be entered into the system. The evaluation and

coordination of the queries are controlled by a system monitor. The

main functions of the system monitor include: 1) Concurrency control; 2)

backup recovery; 3) receiving query packets from the communication con

troller; 4) interpret the query tree and decompose the query into one

variable queries; 5) initiate the operations for the data filter and

join processor; 6) assemble query result in system buffer area; and 7)

initiate the process of sending result packets.

54

The decomposition of the queries uses an algorithm similar to that

found in System R (AST76] and INGRES SWK76]. The transaction manage

ment is based on an implementation of a data base operating system

GRA78]. Similar to many relational data base systems, all the meta

data for the purpose of system control and directory are also stored as

relations in the system. In summary, the system architecture resembles

a conventional computer system. The unique aspect of the system is the

use of a data base operating system and the implementation of special

processors for performing selection and joining. In the following sec—

t1ons,~we will further describe the design of these special processors.

3. The Design of a Data Filter

The function of the data filter is to perform selection and projec
tion operations. The data filter always performs the processes on a

single relation. An instruction to the data filter always specifies a

one—variable query in disjunctive (or conjunctive) normal form. The sym

bolic reference to relation names and attribute names are mapped to phy
sical addresses by the DBM using an internal schema. The internal sche—

mas are stored in special relations maintained by the data filter.

Indices are used to quickly reduce the scope of search. Given a query,

the existence and utilization of indices are determined by the data

filter. Once the physical location for data access is determined, the

data filtering process begins. The data stream retrieved from the disk

is examined by the data filter for satisfying one query. If a match is

found, attributes in the tuple are then projected to form the query

result.

The central component of the data filter is a m*n processor array

as shown in Figure 4. Each row of the array is connected by an AND/OR

network. The result of all the rows are then evaluated by another

OR/AND network. Each processor unit performs a simple comparison
between an input attribute and a query value. It is easy to see that

this processor array evaluates a disjunctive (conjunctive) normal form

query depending upon the selection of the AND/OR operations.

The processor array has two input data streams: one comes from the

query and the other comes from the stored relation. Before the com

parison can take place, the input data streams are loaded into each pro

cessor rows in parallel and within each row of processors the data are

propagated in a pipeline fashion. If we assign each row of the proces

sor array to a conjunct (disjunct) then the input data can be loaded to

all the rows in parallel. Similarly, if we reserve one processor for

each term within a conjunct (disjunct) then the query values could be

loaded to the comparators in parallel. In the case when there is not

sufficient processors to handle a query, multi—pass operation that seri

ally loads and compares the query values with the data stream must be

performed. That is, there are two ways to load the query values Figure
5]: a) serial query loading. Only one single processor is required.
For each input data value, the processor compares each query value in

turn. The results are accumulated in the AND/OR network, and b) paral
lel query value loading. In order to load all the query values into the

processors simultaneously, a large number of processors may be required
to handle arbitrarily complex queries.

55

The scheduling of the processors in a data filter must insure that

the loading of query values is synchronous with the flow of data

streams. The constraint is that all the query values must be loaded and

compared before the next data value is loaded from the data stream. In

STY81] this constraint was found to be t0 > ta + tb, if the selection
is to be processed by a single processor. Where ~0 is the minimum time

required for input a byte from the data stream, ta is the time required
for loading a byte of query value, and tb is the time required for

obtaining the comparison results of the processor. Assuming that it

takes two clock periods to load a query value and one clock period to

read the query result, the synchronization constraint becomes t0 > 3 *

t~0• This condition imposes a constraint on the lower bound of the DBM

system clock frequency.

As an example, assume that the disk has a transfer rate of 2 mega

byte per second ~ = 0.5 ~.is). This implies that the system clock cycle
must be less than 0.16 ~is, which corresponds to a frequency of 6.25 MHz.

4. The Join Processor Array

The join operation is the most complex relational operation,
because two relations to be joined must be accessed simultaneously and

iteratively. If the number of tuples in the two relations are m and n,

respectt~ely, then the complexity of this operation is proportional to m

* n. If we divide the two relations into x and y subfiles, respec

tively, and process all of the sub files in parallel, as shown in Figure
6, then the complexity of the join operation can be reduced to 4.

In order to increase the processing speed of the join processor,

data are broadcasted to all the processors simultaneously. The join

processor array could be considered as an independent peripheral device

which could communicate with the system through a data bus. When a join

operation is initiated, the DBM controller transfers the initial parame

ters to the join processor array, sends the selected values of both

relations into the buffer memories in the join processor array, and then

issues a start signal to activate it. The addresses of the matched

tuples will be returned to the system.

We must emphasize that before putting the join processor unit into

action, the two relations to be joined are taken from the result of

selection/projection and stored in buffers. Only the values from the

specified domain (not the entire tuples) are stored in the internal

buffer memories of the join processor. These values are masked out and

stored into the internal buffers concurrently with the

selection/projection process. In this sense, the join processor is not

really an independent unit; there must exist some common control logic
which controls both the selection/projection unit and the join processor

unit.

The architecture of the join processor array is shown in Figure 7.

The detail of its design is given in TAY81A,TAY81B]. There are four

components of the system: the internal buffer storages for partitioned
key values from the relations R and S; the processors which compares the

key values read from the buffer storages; the output buffer storages

56

which store the addresses (or pointers) of the matched records; and the

control/timing logic which issues the micro—operation control signals.
Each of the four components, except the control/timing logic, is in turn

composed of a set of identical cells. The highly regular structure

makes it a candidate for VLSI implementation.

Assume that the relations R and S are partitioned into x and y

subrelations respectively, the selected values from the tuples of these

two relations are pre—stored in the buffer storages Rl..,R~ and

S1 ..,S respectively. To process the join operation, a set of x R—

values ~re broadcasted to x rows of processors. At the same time, a set

of y S—values are broadcasted to y columns of processors, in which they

are compared with x R—values simultaneously. The comparison results are

stored as a bit—matrix for the controller to generated the partial join
results. The next comparison operation will not take place until the

contents of the bit—matrix are consumed. After all S—values in S~~5 are

broadcasted and compared, we then start to process the next set of R—

values in R1’5 in the same way. This continues until all R—values in

Ri.s are processed.

5. VLSI Implementation Considerations

One of the most important problems in hardware implementation of

relational database operations is the high development cost caused by

the hardware complexity. Recent advances in VLSI technology have

removed many of the hardware design and implementation difficulties

PAT8O]. Using computer aided design tools, an enormous amount of logic
circuits can be integrated on a single silicon chip.

There are three major constraints that must be considered for VLSI

implementation:

1) the equivalent number of gates or transistors required must fit

the present state—of—the—art of VLSI technology;

2) the chip area occupied by the internal bussing and connections

must be confined to a reasonable percentage of the total chip area;

3) the input/output terminals, including both the data and the con

trol signals, must not exceed the maximum allowable pins on the

package.

The regular structure of the processor arrays and the limited

input—output data lines makes them suitable for VLSI implementation.
The complexity of the processor can be evaluated by counting the number

of transistors required. The total number of transistors for a single

data filter processor is estimated to be approximately 13.2 K. In addi

tion, 12.3 K transistors are required for the output buffer storage.

The estimation of the total transistors required for the data filter

depends upon the number of processors used in the processor array. If

we assume a 4 x 2 process array and a 10% overhead for control logic,
then the estimated number of transistors required by the data filter is

130 K STY 81]. Suppose the data bus width is 8 bits, the address bus

width is 16 bits, and there is only one data input line from the disk to

57

the data filter. A 40—pin package should satisfy all the input—output

requirements.

The number of equivalent transistors contained in each functional

logic block of a two—dimensional join process array is evaluated and

listed in Table 1.

Table 1

Functional block Number of equivalent
I transistors

comparator cell I 400

key—value memory block I 2216

out—put memory block I 4958

controller I 3654

auxiliary logic 1306

Suppose we have a 16 x 16 processor array. The maximum number of key
values that could be processed in parallel is 4096 bytes. Each memory

block of the double output buffer has a capacity of 17 * 8 = 136 16—bit

words. We could evaluate the approximate number of transistors required
for each functional block as listed in Table 2. The total number of

transistors required is approximately 260K.

Table 2

Functional Number of Estimated number of

block basic cells, transistors required

Processor matrix 256 102400

Internal key—
value buffers 32 70912

Output buffer 16 79328

Control logic 1 8614

Total 261254

An alternative way to implement the two—dimensional join processor

array, is to integrate each row of the array into a single chip. The

design has a fewer number of transistors per chip, but is more flexible

in structuring a join processor array. Figure 8 shows a block diagram
of such organization. In this example, only one R—value storage module

and one output buffer module are needed. The number of processor cells

is also greatly reduced.

58

6. Summary

We have briefly described the architecture for DBM. The system has

an architecture similar to conventional computers. Its unique feature

is the addition of a few special processors to perform critical data

base operations. The system architecture is also based on system com

ponents of software database systems. A small—scale prototype system is

presently being developed. We have adopted many algorithms developed in

other relational data base systems. The first implementation will also

include a small—scale processor array for selection and joining. We

plan to further study the performance of the prototype system. Investi

gation of the implementation of the special processors in VLSI devices

will also be undertaken.

REFERENCE S

AST76]Ast~ahan,M.M.,et. al,(14 authors), “System R: A Relational

Approach to Data Base Management,”, ACM Trans on Database Systems
Vol. 1, No.2, June 1976.

BAB79]Babb,E., “Implementing a Relational Database by means of Special
ized Hardware”, ACM TODS Vol. 4, No. 1, Mar. 79, pp 1—29.

BAN78]Banerjee,J. and Hsiao,D.K., “Concepts and Capabilities of a Data

base Computer”, ACM Trans on Database ~ Vol.3, No.4, Dec,
1978.

CAB74]Chamberlain,D.D. and R.F.Boyce, “SEQUEL: A Structured English

Query Language”, Proceedings, 1974 ACM SIGFIDET Workshop Ann

Arbor, Michigan, May 1974.

DEW79]DeWitt,D.J., “DIRECT — A Multiprocessor Organization for support

ing Relational Data Bases Management Systems”, IEEE Trans on Corn

~~ers, Vol. C—28, No. 6, June 1979.

DEW81]DeWitt,D.J. and Madison,WI., “A Performance Evaluation of Data

base Machine Architectures”, 7—th International Conference on VLDB

Cannes, France, Sept. 9—11,1981.

59

lEAH8OlEpstein,R. and Hawthorn,P., “Design Decisions for the Intelligent
Database Machine”, NCC, 1980.

EPS8O]Epstein,R. and Hawthorn,P., “Aid in the ‘80s”, Datamation 1980.

GRA78]Gray,J., “Notes on Data Base Operating Systems”, IBM Research

Report RJ2198, Feb. 1978, San Jose, California 95193.

KUN8O]Kung,H.T., and Lehman,P.L., “Systolic (VLSI) Arrays for Rela—

~tional Database Operations”, ACM SIGMOD, 1980

LSZ78]Leilish,H.O., Stiege,G., Zeidler,H.Ch., “A Search Processor for

Database Management Systems”, IEEE 1978.

MAL79]V.A.J.Maller, “The Content Addressable File Store — CAFS”, ICL

Tech J. Nov. 1979, 265—279.

MEN81]M.J. Menon, and David K. Hsiao, “Design and Analysis of a Rela

tional Join Operation for VLSI,” Report Dept. of Computer and

Information Science, The Ohio State University, February, 1981.

PAD79]Piavsic,V.M. and Danielsson,P.E., “Sequential Evaluation of

Boolean Functions”, IEEE Trans on Computers Vol. C—28, No. 12,
Dec. 1979.

PAT8O]Patterson, David A., and Sequin, Carlo H., “Design Considerations

for Single—Chip Computers of the future”, IEEE Trans on Computers
Vol. C—29, NO. 2, Feb. 1980.

(STY8llSheng,Y.Z., Tong,F., Yao,S.B., “Data Filter —— A Relational

Selection Processor”, Tech. Report Database Research Laboratory,

University of Maryland, College Park, MD 20742, October 1981.

5WK76]M. Stonebaker, E. Wang, and P. Kreps, “The Design and Implementa
tion of INGRES”, ACM Trans on Database ~ Vol. 1, No. 3, Sep

tember 1976.

TAY81A]Tong,F. and Yao,S.B., “Design of a Two—Dimensional Join Proces

sor Array”, 6—th Workshop on Computer Architecture for Non—

Numerical Processing Hyeres, France, June 1981.

(TAY81B]Tong, F., and Yao, S.B., “Logical Organization of Two—

Dimensional Join Processor Matrix”, Technical report Database

Research Laboratory, Univ. of Maryland, College Park, MD 20742,

1981.

WAY8O]Wah,B.W. and Yao,S.B., “DIALOG———A Distributed Processor Organi
zation for Database Machines”, AFIPS Press Vol. 49, 1980.

(YA079]Yao,S.B. “Optimization of Query Evaluation Algorithms”, ACM

TODS 4, 2 (June 1979).

60

USERS

ROOT

DOMAIN A

v\
DOMAIN salary

v\
0 name

>~
/\

salary AVG

N

/\
dept CS

Figure 1. DBM as a Node in a

Local Network

salary

Figure 3 Tree Representation of Query

UNIBUS T

DB

0’

I nput

Data Stream
‘ 1’m1~~m2~ — — —

Figure 2 The System Architecture of D~4 Figure 4 The Selection Processor Array

Figure 7 System Organization of the

.~oin Processor Array

Figure 8 One Row of the Join

Processor

0•’

N)

single bit processo~

_.I I

(a)

I”

(b)

Figure 5 Serial and Parallel Query

Value Loading

‘ir ~1?

I’ __J~~ ~

‘2I~ ~

2
—

p.1-
~.1_____..L__ I.

S2 s,

5- vA1_~z3

Figure 6 The Join Processor Array

Well-Connected Relation Computer

Sudhir K. Arora~

Surya R. Dumpala~

Abstract

Well Connected Relation Computer (WCRC) is a data base machine architecture

which is intended to support different data models simultaneously on the same

physical data. The computer stores data as binary partitions (PCP’s), supports a

conceptual level in the Entity-Relationship model and provides the user the

flexibility of operating iii the relational, the network or the hierarchical mod

el. This is one approach to implementing the ANSI SPARC proposals for a data

base system.

I Introduction

Several data base machine architectures have been studied in the literature -

CASS~1 COPE 73], RAP OZKA 75], DIRECT DEWI 78], RARES LIN 76], DBC BANE 79],
RELACS OLIV 79], SEARCH PROCESSOR LEIL 78], XD~1S CANA 74], IFAN DEFI 73]
etc.. Some of these machines address only specific operations on a data base;
some implement only one of the three major data models - Relational, Network or

Hierarchical; some implement all three data models but not simultaneously on the

same physical data.

There is a need for a data base machine architecture which can support different

data models simultaneously on the same physical data. In such a machine users

should be able to view the data according to the relational, network or hierar

chical data model. This is called “logical data independence”. Further, changes
to the physical data should have minimal effect on the user’s view of the system
- “physical data independence”. Such an architecture would conform to the

ANSI/X3/SPARC ANSI 75] proposals or the coexistence model NIJS 76] which

envisage three levels for a data base system - external, conceptual and

internal. At the external level the system should support different data models

depending on user needs. At the conceptual level a stable common view of data

and its semantics must reside. The physical data is stored at the internal level

and may be altered to take advantage of evolving technologies.

To the best of our knowledge there are only two projects addressing this problem
-- GDBMS and WCRC DOGA 80, AROR 81]. In this paper we present an overview of

WCRC.

Note This research was supported by a Science and Engineering Research Board

grant number 214-7248.

* Department of Computer Science, Wayne State University, Detroit, Michigan.
** Department of Electrical and Computer Engineering, McMaster University,
Hamilton L8S 4L7, Canada

63

II Background

The theory of Well Connected Relations (WCR’s) has been presented in AROR 79].
For this paper, it is sufficient for the reader to know only a few definitions

given below.

A well connected relation (WCR is a binary relation W on two sets A and B such

that

(Va) (a ~ A) (Vb) (b ~ B) (aWb)

The sets A and B are called the first and the second constituents of the WCR.

An elementary well connected relation (EWCR is a WCR in which the first con

stituent has a single element. The second constituent is then called the

image set of the first constituent.

A relation A,B} can be expressed as

A,B] =~ R A.,B.]

= R1A1,B1] U R2A2,B2] U . .. RA,B]

ir(R) =a partition of R

where .A.,B.] fl .A.,B.] =

n n

for i � j, 1 < i, j < n and A (J A. and B = U B.

1=1 il

A partition, W., of a binary relation A,B] is a canonical partition

if

n

A,B] = ~ .A.;B.1
1 1 1

i= 1

where, i) WJA.;B.] is a WCR for 1 < i < n,

ii) A. is a set with a single element for 1 < I < n, and

iii) A. ~ A. for I � j and 1 < I, j < n.

64

A partition of a binary relation A,B] is a pseudo canonical partition (PCP
if

n

A,B] = E .A.;B.]
1 1 1

i= 1

where, 1) .A.;B.] is a WCR for 1 < i � n, and

ii) A. is a set with a single element for I � ~ n.

Later in this paper we use PCP’s for storing data in WCRC. In AROR 80] we have

proposed a language based on WCRts for data base systems. The language is data

model independent and can apply equally well to the network, relational and

hierarchical data models. The need for data model independent languages has

become apparent in recent years. They can be used for the conceptual level of an

ANSI SPARC architecture, for communication in a distributed data base system,
for data base restructuring and so on. Data model independent languages reported
in the literature include FQL BUNE 79], QUEST HOUS 79], LSL TSIC 76] and WCRL

AROR 80].

III Basic Organization

WCRC (Well Connected Relational Computer) is a data base computer intended for

non-numeric processing. As shown in Fig. 1, the system consists of three major
components corresponding to the three levels: the External Processor, th~ Con

ceptual Processor and the Internal Processor.

The External Processor performs the following main functions:

i) Queueing of jobs (or queries)
ii) Priority encoding of queries
iii) Translating queries from a user language into a conceptual

level language (WCRL)

iv) Security checking to protect the data base from unauthorized

operations.

It has three memory areas: The User Work Space (UWS), the Interface Buffer Area

(IBA) and The Processor Memory Area (PHA). A portion of UWS is allotted to each

user as his work space. In this area, the user can define his own view, a part of

the data base as seen by him and specify the constraints on it such as granting
other users to use this view or some additional integrity constraints.

The IBA is organized as a first-in first-out (FIFO) memory where the queries are

stored after they are translated from user languages into the conceptual level

language. The translation is handled by three translators, corresponding to the

three data models, which are stored as software modules in the processor memory.
The jobs may also be ranked on a preassigned job priority encoding scheme.

The external level may be implemented on a host computer by software. This would

involve developing program packages in the host language such as COBOL or PASCAL

65

to handle the translation as well as other housekeeping activities.

The conceptual level supports the conceptual model and the user subschemas in

the three major data models. The conceptual level model is based on the

Entity-Relationship model CFIEN 76]. The language at the conceptual schema is

the WCRL AROR 80]. The conceptual level has the facilities for query optimiza
tion and translation from WCRL into the machine language (WCRHL) and a data

dictionary. In addition, it also provides facilities for Data Base Administrator

(DBA) to act directly on the conceptual model of the data base. A special high
level language (DBAL) is provided to handle the DBA requirements.

The conceptual level consists of eight functional blocks (Fig. 1): The Control

ler, The Query Analyser (QA), The Query Translator (QT), Three User Schema

Descriptors (USD’s), Conceptual Schema Descriptor (CSD) and the Buffer Memory
(BM). The Conceptual Processor maintains the information about the storage
structure at the internal level as well as about the conceptual model. The Query
Analyser breaks up the queries into subqueries on the storage structure at the

internal level. The CSD contains the information about the schema definition

operations on the schema, the constraints and the data dictionary. It describes

the logical units of data in the data base and specifies the integrity con

straints and security measures such as access testrictions to certain units of

data. The description of a view by an application is called a subschema. It is a

logical subset of a schema. The USD’s at the conceptual level contain the

subschema definition, operations and constraints corresponding to views in

three models. The information in CSD and USD’s is used by the QA during query

analysis. The QT performs the task of translating analysed queries in WCRL into

machine level primitives (WCRML) that can be directly executed by the Internal

Processor and stores them in the Buffer Memory.

The internal level consists of a number of Query Processors (QP’s) and an array

of Cell Processors (CP’s). Each QP is a master processor which is responsible
for executing one query in WCRML using the cells. The cells are logic-per-track
devices. The data is stored on the cell tracks as binary partitions, known as

pseudo-canonical partitions (PCP!s). The PCP’s are partitioned binary
relations. All the cells are independent of each other, i.e., there is no direct

communication among them. They can only communicate through the query processor

which controls them. The data on the cells can be read by any number of QP’s but

only one QP can write onto the track at a time. The QP selects the cells required
by the query it is handling and makes them slaves. They are released once the

query is processed. The QP co-ordinates its slaves and also computes the overall

set results. Several queries can be handled at the same time, since the QP’s can

work in parallel. This is a multiple-instruction/multiple-data stream organiza
tion (MIND)

IV Query Processing

In this section, an overview of how a query is processed at three levels is dis

cussed. These various stages of query processing are illustrated in Fig. 2. The

queries originate at the user end in three languages corresponding to three dif

ferent models. These are translated into WCRL, priority encoded and put in a

queue in the IBA by External Processor. The system also supports the DBA who

works on the conceptual level directly but reaches it through the external level

like any other user. Therefore, some queries may be originated by the DBA.

66

Once a query is received by the External Processor, it is checked for syntax ana

violation of any security or integrity constraints. After it successfully goes

through these stages, it is translated and put on the job queue. Then the Con

ceptual Processor is activated. It takes one query at a time from the IBA and

performs query analysis on it. It breaks up the query on logical well-connected

relations (WCR’s) into subqueries on the stored PCPts. It checks whether logical
WCR’s can be constructed from the stored ones and also subjects them to the

security and intergrity constraints. Any violation of these constraints would

terminate the query at this stage and an error message would be channeled to the

user through the external level. Successful queries would now be translated by
the Query Translator into WCRI’IL and submitted to the internal level through the

Buffer Memory. The query translator also provides the information about the

required cells along with the machine primitives. This minimizes the search time

required to select the cells. The QP’s take the queries from the Buffer Memory
and select the required tracks by a polling scheme. The machine language primi
tives are executed on the slave processors. For the retrieval queries, the data

is sent to the external level directly through an I/O read mechanism. For the

update queries, the success/failure is communicated to the user.

V The Strorage Structures

The data is stored on the cell tracks as PCPts. Since in a canonical partition
the WCR’s may be of arbitrarily large size (number of tuples), it cannot be

implemented directly as a storage structure. Instead, two types of physical

storage structures are proposed in this section for the storage of data on cell

tracks: PCP-Option I, and PCP-Option II.

PCP - Option I

A partition of a binary relation A,B,] is a pseudo canonical partition =

Option I if

n

A,B] = E .A.;B.]
1 1 1

i 1

where

i) .A. B.] is aWCR for 1< i < n,
1 1;1

— —

ii) A. is a set with a single element for 1 < i < n, and

iii) A. or B. values are ordered.
1 1

It may be noted that, elements of A. may be repeated in several WCR’s, unlike the

CP’s. In such a PCP all WCR’s can be made equal in size by breaking the larger
WCR’s into several smaller ones. The size of each of these PCP’s can be stand

ardized at the system level or cell level. With the WCR size fixed, each of them

can be assigned a “fixed” position on the track. This reduces movement of data

and eliminates the need for garbage collection. The track format for this data

structure is shown in Fig. 3. The track is divided into two halves. Each half

67

contains one constituent of a PCP. Logically, any one of the two constituents of

a PCP may be made the first constituent. This gives rise to two possible PCP’s

for the same binary data, one forward PCP and one reverse PCP. A header is pro

vided at the beginning of each half for this purpose. The header contains the

number of WCR’s in that half, the attribute name(s) of that constituent and some

flags, common to all the WCR’s in that half. Each standard sized WCR consists of

a set of mark bits, an address field containing a value of the first constituent

and a fixed number of pointers. The pointers contain addresses of the values in

the second constituent of the ~‘CR in the other half of the track. Thus, all

pointers in one half of the track point to addresses in the other half of the

same track and excessive pointer chasing is avoided. An example of a binary
relation stored as a PCP on a track is shown in Fig. 4.

This storage structure has the following advantages. The pointers in each half

of a track are always forward pointing. Therefore, there is no backward refer

encing and the hardware implementation would be simpler. The data is organized
in such a way that queries based on both the forward and the reverse PCP’s can be

answered with equal ease. It also avoids duplication of data values. However, if

a PCP overflows one track, it may give rise to duplication of some values on

these cell boundaries. If the WCR size on a track is chosen in such a way that

the “averagett ~~‘CR size in the PCP is an integral multiple of this, the extra

storage for the duplicate values and the pointers may be minimized. Also, if we

use a counter to locate the WCR’s (standard sized) on the track, there is no need

to store the WCR address with each WCR.

PCP - Option II

Though use of pointers in the PCP - option I provides an efficient utilization

of memory space, the pointer chasing would increase either the complexity of

hardware or computation time to perform operations like join which require data

contiguity. In view of this, another storage structure is presented here, which

involves no pointers.

This second type of storage sturcture exploits an inherent characteristic of

the E-R model. In all the CP’s corresponding to entities and relationships, the

first constituent is always a key or a system-defined key. Therefore, a CP would

always be a set of EWCR’s, where each non key value may be connected to several

key values, but not the other way around. Such a CP may be viewed as a set of

disjoint EWCR’s. It is formally defined as follows. It is different from a PCP -

Option I in that the elements of the constituents are not ordered.

A partition of a binary relation R~A,B1 is a pseudo canonical partition - Option
II if

A,B] E .A.;B.]

where

1) .A.;B.] is a WCR for 1 < i � n,
)_ 1 1

ii) A. is a set with a single element for 1 < i < n

68

iii) The elements of A and B are unordered.

In option II, the EWCR’s may be of arbitrarily large size by breaking the larger
EWCR’s into several smaller ones. Now, the hardware size of each EWCR can be

standardized in a manner similar to the PCP’s of Option I. The track format of

this storage structure is shown in Fig. 5. The track is continuous and undi

vided, unlike the Option I format. The header of the track contains the informa

tion about the track address, size of the EWCR’s in the track and some flags
common to the whole track. It also contains the attribute names of the first and

second constituents. Each EWCR consists of several mark bits, a first constitu

ent value field and certain number of second constituent value fields. The num

ber of second constituent value fields (key values) per EWCR is standardized at

the system level or track level. This makes the size of the EWCR fixed and it is

specified in the track header. A limit is placed on this size to facilitate

hardware implementation. Thus the EWCR size may be variable within this hardware

limit. An example of a binary canonical partition stored as PCP’s of Option II

on a track is shown in Fig. 6.

This storage structure offers the following advantages. There is no duplication
of value fields as long as the EWCR size is not greater than the hardware limit.

There are no pointers and hence storage requirements for pointers and pointer

chasing are avoided. Also it is possible to view the PCP’s as both forward and

reverse PCP’s for the same stored binary data because the second constituent

values are key values and are never duplicated.

VI Concluding Remarks

In this paper we have described the Well Connected Relation Computer (WCRC)

AROR 81]. WCRC implements the ANSI/X3/SPARC proposals or the coexistence model

of data. The architecture of WCRC is based on a simple data structure, WCR which

has been studied in detail elsewhere AROR 79]. The architecture has 3 levels -

external, conceptual and internal. It can simultaneously support the 3 major
data models - network, relational and hierarchical at the external level. At the

conceptual level a stable view of the data base can be implemented in the Entity
Relationship model. A data model independent language based on WCR’s (WCRL AROR

80]) is used at the conceptual level. At the internal level the physical data is

stored in logic-per-track pseudo associative memory. The approach taken by other

researchers in this area has been to store related data contiguously as n-ary

relations (for example). We depart from this approach radically. We store data

as partitions of binary relations - Pseudo Canonical Partitions (PCP’s). Two

possible storage structures for PCP’s - Option I and Option II - have been

described.

69

REFERENCES

ANSI 75]
ANSI/X3/SPARC study Group on Data Base Management Systems, Interim Report, FDT,

ACM-SIGMOD, Vol. 7, No. 2, 1975.

AROR 79]
Arora, S.K., Smith, K.C., “A Theory of Well-Connected Relations”, J. of Informa

tion Sciences, 19, 1979, pp. 97-134.

AROR 80]
Arora, S.K., Smith, K.C., “WRCL: A Data Model Independent Language for Data Base

Systems”, To appera, Tnt. J. of Comp. and Inf. Sciences, 1980.

AROR 81]
Arora, S.K., Dumpala, S.R., Smith, K.C., “WCRC: An ANSI SPARC Machine Architec

ture for Data Base Management”, To appear, Proc. Eighth International Symp.
on Comp. Arch., Minneapolis, May 1981.

BANE 79]

Banerjee, J., Hsiao, D.K.
, Kannan, K., “DBC - A Database Computer for Very Large

Databases”, IEEE Trans. on Computers, Vol. C-28, No. 6, June 1979, pp.
414-429.

BUNE 79]

Buneman, P., Frankel, R.E., “FQL - A Functional Query Language”, ACM-SIGMOD,
Boston, 1979, pp. 52-58.

CANA 4
Canaday, R.H. et al., “A Back-End Computer for Data Base Management”, CACM 17,

10, Oct. 1974, pp. 575-582.

CHEN 76]
Chen, P.P.S., “Entity Relationship Model - Towards a Unified View of Data:, ACM

Trans. on Database Systems, March, 1976, Vol. 1, No. 1, pp. 9-36.

COPE 73]
Copeland, G.P., Lipovski, G.J., Su, S.Y.W., “The Architecture of CASSM: A Cellu

lar System for Non-numeric Processing”, First Annual Symposium on Computer
Architecture, 1973.

DEFT 73]
DeFiore, C.R., Berra, P.B., “A Data Management System Utilizing an Associative

Memory”, Proc. ACM National Computer Conf., 1973, pp. 181-185.

DEWI 78]
DeWitt, D.F., “DIRECT - A Multiprocessor Organization for Supporting Relational

Data Base Management Systems”, Proc. Fifth Annual Symp. on Comp. Architec

ture, 1978, pp. 182-189.

DOGA 80]
Dogac, A., Ozkarahan, E.A., “A Generalized DBMS Implementation on a Database

Machine”, ACM SIGMOD, Santa Monica, California, May 1980, pp. 133-143.

70

IIOUS 79]
Housel, B.C., “QUEST: A High Level Data Manipulation Language for Network,

Hierarchical and Relational Databases”, IBM Res. Rep., RJ2588(33488)
7/25/79, 1979.

bElL 78]
Leilich, H.0.

, Stiege, G.
,

Zeidler, H. Cli.
,

“A Search Processor for Data Base

Management Systems”, Proc. Fourth VLDB, West Berlin, Sept. 1978, pp.

280-287.

UN 76]
Liii, C.S.. Smith D.C.P.

, Smith, J.M.
.

“The Design of a Rotating Associative Mem

ory for Relational Data Base Applications”, ACM TODS, Vol. 1, Mar. 76, pp.

53-65.

NIJS 76]

Nijssen, G.M.
,
“A Gross Architecture for the Next Generation Database Management

Systems”, Modelling in Data Base Management Systems, North-Holland, 1976,

pp. 1-24.

OLIV 79.]
Oliver, E.J., “RELACS, An Associative Computer Architecture to Support a Rela

tional Data Model”, Ph.D. Thesis, Syracuse University, 1979.

OZKA 75]
Ozkarahan, E.A., Schuster, S.A., Smith, K.C., “RAP - An Associative Processor

for Data Base Management”, National Computer Conf., 1975, pp. 379-387.

TSIC 76]
Tsichritzis, D., “LSL: A Link and Selector Language”, ACM-SIGMOD, Washington,

D.C., June 1976, pp. 123-134.

71

Query in

‘I,
Syntax checking

‘I,
Security checking

traneiatton into JI~L

‘I,
Security checking

1.
totegrity checking

Query Anaiy.io, optinioatioo

1~
Concurrency Resolving

‘I,
Translation into iCONS.

~1
Execution

Jr
cecrievel/Reporting

513. The Stogen of Query Pr000escog

a1

a1

a2 b2

a2

a3

a3 b2

(a) Binary Relation

(1) ~
, , ,

~ ~ (1, 2, 3)

(2) C
, . .

) (a2) (1, 2, ~)

(3) (
.) (a3) (1. 2, $)

(b) One half of track

(1) (
, ,

) (b1) (1, 2, 3)

(2) C
, , ,

) (b2) (1. 2, 3)

(3) (
, , ,

) (b3) (1, 0
•
0

(c) Other half of track

110. 4 ‘CPa or, a Track - Cpt~~~ S

tOTflrIoL

intL

n!(t~TOoL

LittL

Tore .rc.

sea farStity

an,

opee.tioee on SO.

oeeatnteee

IflflSOL

LSVfl

At

taternel

Leval

At

Conceptual
Level

At

Internal

Level

query ?rooee000

Prno.nor

L~L~ I ~

EtI. 1 Q.1’.ILL RCH1E1’JPE :r AC

Seendnvd steed oa’s

fee teveene —~

gender

(t) TrACt

gead.r

II II I I I (b)nanfl

Trace flcge rant toeetctesst

Addr.se antrissas flee.

I J II II I I I IiC,nto
Ito aaeo mba rinse Soober of Ps inter.

rddrees Otto naSA

FIG. 3 IRPCK OR’AF

72

Fig. $ Track Format of PC? — Option CI

K1 A5j ~ ~2J ~ K1~ s; C1J

K1 A,) K2 32~ °; t2J a; C2)

~K1 ~) K,; B5) o; C5 ~
(b) The PC?’,

Fig. 7 An ixaopio Showing PC?’s Correspondjog to an K—a

Schema

5

(a) Track

tad of

Track

Symbol

Track

Reader

IIII—...—... It It II II
Track Sine at Flags First Second

address tWc~ C050ticuent Constituent

Attrjbucs Attribute

Names Names

(b) Neader

a1

a1

a2

a2

(a) A Sisary RaLstjon

I) (
, , ,

) (ar) (b2, 5, ~

2) (
,) (az) (b6, 5, 5)

~) (
, , ,

) (a3) (5. b4, •)

Mark bit,

(b) the FCP’s an Track

FIg. 6 PC?’, on a Track — Option ii

L II___I-______
Mack Nsnkay
Bits Value Field

(First

Constituent)

(..% rrr~

1~ i~I
Key Value

Fields

(Second

Cansci.cuesc)

(a) Atypicai Segment in the Data Base

73

Recent & Upcoming
Selections from the
IEEE

COMPUTER SOCIETY PRESS
1109 SPRING STREET suite 201/ P0. BOX 639 / SILVER SPRING, MARYLAND 20901 (301)589-3386

Alphabetical by Title/Subject Areas October 1981

ORDER PRICES AVAIL TITLES YEAR CODE PAGES IEEE NO

NO NM/M PUBL

301 10.00/ 7.50 OK PROC., APPLICATION OF PERSONAL COMPUTING TO AID THE HANDICAPPED WKSHP. 1980 P 88 80CH1596—6
393 11/81 PROC., ARTS; SYMPOSIUM ON USING SMALL COMPUTERS IN THE 1981 P 81CH1721—0
165 25.00/18.75 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (11TH ASILOMAR CONF.) 1977 P 492 77CH1315—1
197 25.00/18.75 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (12TH ASILOMAR CONF.) 1978 P 764 78C51369—8
227 25.00/18.75 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (13TH ASILOMAR CONF.) 1979 P 615 79CH1468—8
328 30.00/22.50 OK PROC., CIRCUITS, SYSTEMS, & COMPUTERS (14TH ASILOMAR CONF.) 1980 P 520 80CH1625—3
383 02/82 PROC., CIRCUITS, SYSTEMS, & COMPUTERS (15TH ASILOMAR CONF.) 1981 P
087 20.00/15.00 OK PROC., COMPCON ‘73 (SPRING) 1973 P 246 73CH0716—1
077 20.00/15.00 OK PROC., COMPCON ‘74 (FALL) 1974 P 272 74CH0869—8
080 20.00/15.00 OK PROC., COMPCON ‘74 (SPRING) 1974 P 310 74CH0825—0
071 20.00/15.00 OK PROC., COMPCON ‘75 (FALL) 1975 P 341 75Ca0988—6
067 20.00/15.00 OK PROC., COMPCON ‘75 (SPRING) 1975 P 280 75CH0920—8
070 20.00/15.00 OK PROC., COMPCON ‘76 (FALL) 1976 P 350 76CR1115—5
069 20.00/15.00 M/F 0 PROC., COMPCON ‘76 (SPRING) 1976 P 231 76CH1069—4
129 20.00/15.00 OK PROC., COMPCON ‘77 (FALL) 1977 P 474 77CH1258—3
133 20.00/15.00 OK PROC., COMPCON ‘77 (SPRING) 1977 P 372 77CH1165—0
169 25.00/18.75 N/F 0 PROC., COMPCON ‘78 (FALL) 1978 P 433 78CH1388—8
172 20.00/15.00 OK PROC., COMPCON ‘78 (SPRING) 1978 P 384 78CH1328—4
254 25.00/18.75 OK PROC., COMPCON ‘79 (FALL) 1979 P 492 79CH1465—1
217 25.00/18.75 OK PROC., COMPCON ‘79 (SPRING) 1979 P 329 79CH1393—8
303 30.00/22.50 OK PROC., COMPCON ‘80 (FALL) 1980 P 750 80CH1598.-2
287 25.00/18.75 OK PROC., COMPCON ‘80 (SPRING) 1980 P 515 80CH1491—0
372 25.00/18.75 OK PROC., COMPCON ‘81 (FALL) 1981 P 358 81CH1702—0
341 30.00/22.50 OK PROC., COMPCON ‘81 (SPRING) 1981 P 482 81CH1626—1
123 25.00/18.75 OK PROC., COMPSAC ‘77 (1ST CONF. ON SOFTWARE APPLICATIONS) 1977 P 834 77CH1291—4
196 30.00/22.50 OK PROC., COMPSAC ‘78 (2ND CONF. ON SOFTWARE APPLICATIONS) 1978 P 832 78CH1338—3
236 36.00/27.00 OK PROC., COMPSAC ‘79 (3RD CONF. ON SOFTWARE APPLICATIONS) 1979 P 912 79CH1515—6
315 36.00/27.00 OK PROC., COMPSAC ‘80 (4TH CONF. ON SOFTWARE APPLICATIONS) 1980 P 900 80CH1607—1
379 36.00/27.00 12/81 PROC., COMPSAC ‘81 (5TH CONF. ON SOFTWARE APPLICATIONS) 1981 P 446 81CH1698—0
128 25.00/18.75 OK PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (1ST CONF.) 1977 P 373 77CH1270—8
198 25.00/18.75 OK PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (2ND CONF.) 1978 P 667 78CH1413—4
223 36.00/27.00 OK PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (3RD CONF.) 1979 P 900 79CH1480—3
326 68.00/51.00 M/F 0 PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (4TH CONF.) 1980 P 2080 80CH1570—1
377 60.00/45.00 11/81 PROC., COMPUTER APPLICATIONS IN MEDICAL CARE (5TH CONF.) 1981 P 1164 81CH1696—4
271 28.00/21.00 OK PROC., COMPUTER APPLICATIONS IN RADIOLOGY (6TH CONF.) 1979 P 432 79CH1404—3
096 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (2ND CONF.) 1975 P 231 75CH0916—7
099 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (3RD CONF.) 1976 P 202 76CH1043—5
146 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (4TH CONF.) 1977 P 210 77CH1182—5
174 20.00/15.00 OK PROC., COMPUTER ARCHITECTURE (5TH CONF.) 1978 P 256 78CH1284—9
237 22.00/16.50 OK PROC., COMPUTER ARCHITECTURE (6TH SYMPOSIUM) 1979 P 243 79CR1394—6
291 25.00/18.75 OK PROC., COMPUTER ARCHITECTURE (7TH SYMPOSIUM) 1980 P 315 80CH1494—4
346 28.00/21.00 OK PROC., COMPUTER ARCHITECTURE (8TH SYMP.) 1981 P 518 81CH1593—3
218 10.50/ 8.50 OK PROC., COMPUTER ARCHITECTURE FOR NON—NUMERIC PROCESSING (4TH CONF.) 1978 P 133

378 25.00/18.75 11/81 PROC., COMPUTER ARCHITECTURE FOR PATTERN ANALYSIS WORKSHOP 1981 P 348 81CH1697—2
017 20.00/15.00 OK PROC., COMPUTER ARITHMETIC (3RD SYMP.) 1975 P 256 75CH1017—3
176 22.00/16.50 OK PROC., COMPUTER ARITHMETIC (4TH SYMP.) 1978 P 274 78CH1412—6
347 22.00/16.50 OK PROC., COMPUTER ARITHMETIC (5TH SIN?.) 1981 P 278 81CH1630—3
364 30.00/22.50 OK PROC., COMPUTER GRAPHICS ASSN; INAUGURAL CONFERENCE 1980 P 324
387 36.00/25.00 OK PROC., COMPUTER GRAPHICS ASSOCIATION (2ND CONF.) 1981 P

005 16.00/12.00 M/F 0 PROC., COMPUTER HARDWARE DESCRIPTION LANGUAGES 1975 P 191 75CH1010—8
274 20.00/15.00 OK PROC., COMPUTER HARDWARE DESCRIPTION LANGUAGES (4TH SIN?.) 1979 P 200 79CH1436—5
038 12.00/ 9.00 OK PROC., COMPUTER NETWORKING SYMPOSIUM (1977 CONF.) 1977 P 130 77C01252—6
216 14.00/10!50 OK PROC., COMPUTER NE~Q(KIN~ SYMPOSIUM (1978 CONF.) 1978 P 137 78C01400—1

218 16.OO/i2.OO OK PROC., COMPUTER NETWORKING SYMPOSIUM (1979 CONF.) 1979 P 180 79CH1467—0
330 16.00/12.00 OK PROC., COMPUTER NETWORKING SYMPOSIUM (1980 CONF.) 1980 P 192 80C81586—7
380 12/81 PROC., COMPUTER NETWORKING SYMPOSIUM (1981 CONF.) 1981 P 81CH1699—8

137 16.00/12.00 OK PROC., COMPUTER SCIENCE & ENGINEERING CURRICULA WORKSHOP 1977 P 149 EHO126—3

145 32.00/25.60 OK PROC., COMPUTER SOFTWARE ENGINEERING: RELIABILITY, MGT. & DESIGN SYMP. 1976 P 583 76CH10710

113 12.00/ 9.00 M/F 0 PROC., COMPUTER SOFTWARE RELIABILITY SYMPOSIUM 1973 P 167 73CH0741—9

082 12.00/ 9.00 OK PROC., COMPUTER—AIDED DIAGNOSIS OF MEDICAL IMAGES (1976 SIN?.) 1976 P 100 76CH1170—0
155 12.00/ 9.00 OK PROC., COMPUTER—AIDED SEISMIC ANALYSIS AND DISCRIMINATION (1977 CONF.) 1977 P 122 77CH1224—3

014 20.00/15.00 N/F 0 PROC., COMPUTERS IN CARDIOLOGY (1974 CONF.) 1974 P 235 74CH0879—7
015 20.00/15.00 N/F 0 PROC., COMPUTERS IN CARDIOLOGY (1975 CONF.) 1975 P 286 75CH1018—1

016 20.00/15.00 OK PROC., COMPUTERS IN CARDIOLOGY (1976 CONF.) 1976 P 458 76CH1160—1

193 25.00/18.75 OK PROC., COMPUTERS IN CARDIOLOGY (1977 CONF.) 1977 P 650 77CH1254—2

224 25.00/18.75 OK PROC., COMPUTERS IN CARDIOLOGY (1978 CONF.) 1978 P 436 78CH1391—2

235 30.00/22.50 OK PROC., COMPUTERS IN CARDIOLOGY (1979 CONF.) 1979 P 488 79CH1462—1

324 30.00/22.50 OK PROC., COMPUTERS IN CARDIOLOGY (1980 CONF.) 1980 P 450 80CH1606—3

384 02/82 PROC., COMPUTERS IN CARDIOLOGY (1981 CONF.) 1981 P

285 20.00/15.00 OK PROC., COMPUTERS IN OPHTHALMOLOGY (1979 CONF.) 1979 P 272 79CH1517—2

203 20.00/15.00 N/F 0 PROC., CONFERENCE ON COMPUTING IN THE 1980’S (OREGON REPORT) 1978 P 266

74

ORDER PRICES AVAIL TITLES YEAR CODE PAGES IEEE NO

NO NM/M PUBL

049

027

20.00/15.00
20.00/15.00

OK

N/F 0

PROC.,
PROC.,

DATA COMMUNICATIONS SYMPOSIUM (3RD CONF.)
DATA COMMUNICATIONS SYMPOSIUM (4TH CONF.)

1973

1975

P

P

160

180
73CHQ828—4

75CH1001—7

031 20.00/15.00 OK PROC., DATA COMMUNICATIONS SYMPOSIUM (5TH CONF.) 1977 P 77CH1260—9
230 20.00/15.00 N/F 0 PROC., DATA COMMUNICATIONS SYMPOSIUM (6Th CONF.) 1979 P 210 79CH1405—0

374 25.00/18.75 11/81 PROC., DATA COMMUNICATIONS SYMPOSIUM (7TH CONF.) 1981 P 260 81CH1694—9
034 12.50/10.00 OK PROC., DESIGN AUTOMATION (9TH CONF.) 1972 P 375 72CH0706—2

024 20.00/15.00 OK PROC., DESIGN AUTOMATION (11TH CONF.) 1974 P 379 74CH0865—6

025 20.00/15.00 OK PROC., DESIGN AUTOMATION (13TH CONF.) 1976 P 501 76CH1098—3

154 25.00/18.75 OK PROC., DESIGN AUTOMATION (14TH CONF.) 1977 P 507 77CH1216—1

178

240
25.00/18.75
25.00/18.75

OK

N/F 0

PROC.,
PROC.,

DESIGN AUTOMATION (15TH CONF.)
DESIGN AUTOMATION (16TH CONF.)

1978

1979

P

P

493

567

78CH1363—1

79CH1427—4
302

361

136

44.00/33.00
44.00/33.00
12.00/ 9.00

OK

OK

OK

PROC.,

PROC.,
PROC.,

DESIGN AUTOMATION (17TH CONF.)
DESIGN AUTOMATION (18TH CONF.)
DESIGN AUTOMATION AND MICROPROCESSOR SYMPOSIUM

1980

1981

1977

P

P

P

642

900

110

80CH1550—3

81CH1643—6

77CH1189
270 25.00/18.75 N/F 0 PROC., DISTRIBUTED COMPUTING (1ST CONF.) 1979 P 796 79CH1408—4

344

329

36.00/27.00
20.00/15.00

OK

OK

PROC.,
PROC.,

DISTRIBUTED COMPUTING SYSTEMS (2ND CONF.)
DISTRIBUTED DATA ACQUISITION AND CONTROL (1ST CONF.)

1981

1980

p

P

524

222

81CH1591—7

80CH1571—9
040 20.00/15.00 OK PROC., FAULT—TOLERANT COMPUTING (FTCS—--5) 1975 P 275 75CH0974—6
042

156

20.00/15.00
20.00/15.00

M/F 0

OK

PROC.,
PROC.,

FAULT—TOLERANT COMPUTING (FTCS-—6)
FAULT—TOLERANT COMPUTING (FTCS——7)

1976

1977

P

P

206

217

76CH1094—2

77CH1223—7

180 25.00/18.75 OK PROC., FAULT—TOLERANT COMPUTING (FTCS——8) 1978 P 226 78CH1286—4

239

336

22.00/16.50
25.00/18.75

OK

OK

PROC.,
PROC.,

FAULT—TOLERANT COMPUTING (FTCS——9)
FAULT—TOLERANT COMPUTING (FTCS-10)

1979

1980

P

P

236

400

79CH1396—1

80CH1604—8
350 25.00/18.75 OK PROC., FAULT—TOLERANT COMPUTING (FTCS—11) 1981 P 290 81CH1600—6
011

132

20.00/15.00
20.00/15.00

OK

OK

PROC.,
PROC.,

FOUNDATIONS OF COMPUTER SCIENCE (16TH SYMP.)
FOUNDATIONS OF COMPUTER SCIENCE (18TH SYMP.)

1975

1977

P

P

200

269

75CH1003—3

77CH1278—1

205

251

22.00/16.50
22.00/16.50

OK

OK

PROC.,

PROC.,

FOUNDATIONS OF COMPUTER SCIENCE (19TH SYMP.)
FOUNDATIONS OF COMPUTER SCIENCE (20TH SYMP.)

1978

1979

P

P

290

440

78CH1397—9

79CH1471—1

323 30.00/22.50 OK PROC., FOUNDATIONS OF COMPUTER SCIENCE (21ST SYMP.) 1980 P 422 80CH1498—5

376 30.00/22.50 11/81 PROC., FOUNDATIONS OF COMPUTER SCIENCE (22ND SYMP.) 1981 P 430 81CH1695—6

200 25.00/18.75 OK PROC., lEd ‘78 (INDUSTRIAL APPLICATIONS OF MICROPROCESSORS) 1978 P 233 78CH1312—8

091 25.00/18.75 OK PROC., INT’L CONF. ON PATTERN RECOGNITION (1ST ICPR) 1973 P 600 73CH0821—9

081 25.00/18.75 OK PROC., INT’L CONF. ON PATTERN RECOGNITION (2ND ICPR) 1974 P 550 74CH0885—4

083

183

25.00/18.75
40.00/30.00

N/F 0

OK

PROC.,
PROC.,

INT’L CONF. ON PATTERN RECOGNITION (3RD ICPR)
INT’L CONF. ON PATTERN RECOGNITION (4TH ICPR)

1976

1978

P

p

884

1170

76CH1140—3

78CH1331—8

247 48.00/36.00 OK PROC., INT’L CONF. ON PATTERN RECOGNITION (5TH ICPR) 1980 P 1425 80CH1499—3

179 25.00/18.75 OK PROC., INTERACTIVE TECHNIQUES IN COMPUTER—AIDED DESIGN SYMPOSIUM 1978 P 479 78CH1289—8

292 16.00/12.00 OK PROC., INTERCONNECTION NETWORKS WORKSHOP 1980 p 124 80CH1560—2

160 16.00/12.00 OK PROC., JOINT COLLEGE CURRICULA WKSHP ON COMP. SCIENCE, ENGRING (4TH) 1978 P 138 78CH1311—0

214 16.00/12.00 OK PROC., JOINT ENGINEERING MANAGEMENT (26TH CONF.) 1978 P 173 78CH1359—9

276 16.00/12.00 N/F 0 PROC., LOCAL COMPUTER NETWORKS (4TH CONF.) 1979 p 148 79CH1446—4

320 20.00/15.00 OK PROC., LOCAL COMPUTER NETWORKS (5TH CONF.) 1980 p 130 80CH1542—0

382 16.00/12.00 11/81 PROC., LOCAL COMPUTER NETWORKS (6TH CONF.) 1981 P 114 81CH1690—7

093 25.00/18.75 OK PROC., MACHINE PROCESSING OF REMOTELY SENSED DATA (1973 CONF.) 1973 P 422 73CH0834—2

094 25.00/18.75 OK PROC., MACHINE PROCESSING OF REMOTELY SENSED DATA (1975 CONF.) 1975 P 315 75CH1009—0

095 25.00/18.75 OK PROC., MACHINE PROCESSING OF REMOTELY SENSED DATA (1976 CONF.) 1976 P 238 76CH1103—1

122 25.00/18.75 OK PROC., MACHINE PROCESSING OF REMOTELY SENSED DATA (1977 CONF.) 1977 P 358 77CH1218—7

256 25.00/18.75 OK PROC., MACHINE PROCESSING OF REMOTELY SENSED DATA (1979 CONF.) 1979 P 472 79CH1430—8

306 30.00/22.50 OK PROC., MACHINE PROCESSING OF REMOTELY SENSED DATA (1980 CONF.) 1980 P 368 80CH1533—9

359 12.00/ 9.00 OK PROC., MASS STORAGE SYSTEMS SYMPOSIUM (4TH SYMP.) 1980 P 76 80CH1581—8

290 16.00/12.00 OK PROC., MICRO APPLICATIONS IN THE ‘80S (ARIZONA TECHNICAL SYMP.) 1980 P 105 80CH1525—5

192

246
12.00/ 9.00

14.00/10.50
OK

OK

PROC.,
PROC.,

MICRO—DELCON ‘78

MICRO—DELCON ‘79

1978

1979

P

p

68

122

78CH1330—O

79CH1426—6

296 16.00/12.00 OK PROC., MICRO—DELCON ‘80 1980 P 141 80CH1528—9

343 16.00/12.00 OK PROC., MICRO—DELCON ‘81 1981 P 162 81CH1628—7

061 20.00/15.00 OK PROC., MICROCOMPUTER ‘77 CONFERENCE 1977 p 274 77CH1185—8

280 16.00/12.00 OK PROC., MICROCOMPUTER FIRMWARE AND I/O WORKSHOP (1979) 1979 P 240 TH0065—3

162 13.00/ 9.75 OK PROC., MICROCOMPUTER—BASED INSTRUMENTATION 1978 P 104 78CH1303—7

298 16.00/12.00 OK PROC., MICROPROCESSOR APPLICATIONS IN MILITARY & INDUSTRIAL SYSTEMS 1980 P 175 80CH1579—2

360 16.00/12.00 OK PROC., MICROPROCESSORS AND EDUCATION WORKSHOP (1980) 1980 P 130 TH0083—6

106 7.50/ 5.00 OK PROC., MICROPROGRAMMING WORKSHOP (MICRO—-5) 1972 P 98

110 12.00/ 9.00 OK PROC., MICROPROGRAMMING WORKSHOP (MICRO——8) 1975 P 107 75CH1053—8

111 8.00/ 6.00 OK PROC., MICROPROGRAMMING WORKSHOP (MICRO——9) 1976 P 61 76CH1148—6

053 12.00/ 9.00 OK PROC., MICROPROGRANMING WORKSHOP (MICRO—iD) 1977 P 133 77CH1266—6

204 14.00/10.50 OK PROC., MICROPROGRAMMING WORKSHOP (MICRO—il) 1978 P 160 78CH1411—8

248 16.00/12.00 OK PROC., MICROPROGRAMMING WORKSHOP (MICRO—12) 1979 P 160 79CH1516—4

327 16.00/12.00 OK PROC., MICROPROGRAMMING WORKSHOP (MICRO—13) 1980 P 190 80CH1599—0
373 20.00/15.00 OK PROC., MICROPROGRAMMING WORKSHOP (MICRO—14) 1981 P 214 81CH1691—5
279 22.00/16.50 OK PROC., MICROS AND MINICOMPUTERS (1979 CONF.) 1979 P 356 79CH1474—6

135 20.00/15.00 OK PROC., MINI AND MICROCOMPUTERS SYMPOSIUM (MIMI ‘76) 1976 P 250 76CH1180—9

182 20.00/15.00 OK PROC., MINI AND MICROCOMPUTERS SYMPOSIUM (MIMI p77) 1977 P 316 77CH1347—4

115 5.00/ 5.00 OK PROC., MODELING & ANALYSIS OF DATA NETWORKS SYMPOSIUM 1976 P 92

153 20.00/15.00 OK PROC., MULTIPLE—VALUED LOGIC (7TH CONF.) 1977 P 155 77CH1222—9
177 20.00/15.00 OK PROC., MULTIPLE—VALUED LOGIC (8TH CONF.) 1978 p 298 78CH1366—4

238 22.00/16.50 OK PROC., MULTIPLE—VALUED LOGIC (9TH CONF.) 1979 P 304 79CH1408—4

295 25.00/18.75 OK PROC., MULTIPLE—VALUED LOGIC (10TH CONF.) 1980 P 277 80CH1577—6

348 25.00/18.75 OK PROC., MULTIPLE—VALUED LOGIC (11TH CONF.) 1981 P 294 80CH1611—3

163 16.00/12.00 OK PROC., OCEANIC DATA BASE INFORMATION EXCHANGE WORKSHOP 1977 P 147 ENO134-7
088 16.00/12.00 OK PROC., OPTICAL COMPUTING CONFERENCE (1974 CONF.) 1974 P 104 74CH0862—3
084 16.00/12.00 OK PROC., OPTICAL COMPUTING CONFERENCE (1975 CONF.) 1975 P 169 75CH0941—5

100 16.00/12.00 OK PROC., OPTICAL COMPUTING CONFERENCE (1976 CONF.) 1976 p 150 76CH1100—7

185 20.00/15.00 OK PROC., OPTICAL COMPUTING CONFERENCE (1978 CONF.) 1978 P 224 78CH1305—2

319 30.00/22.50 OK PROC., OPTICAL COMPUTING CONFERENCE (1980 CONF.) 1980 P 232 80CH1548—7
107 20.00/15.00 OK PROC., PARALLEL PROCESSING (1975 CONF.) 1975 P 255

116

108
20.00/15.00
20.00/15.00

OK

OK

PROC.,
PROC.,

PARALLEL PROCESSING (1976 CONF.)
PARALLEL PROCESSING (1977 CONF.)

1976

1977

P

P

328

256

76CH1127—0

77CH1253—4

175 22.00/16.50 OK PROC., PARALLEL PROCESSING (1978 CONF.) 1978 P 269 78CH1321—9

234 22.00/16.50 OK PROC., PARALLEL PROCESSING (1979 CONF.) 1979 P 279 79CH1433—0

317 25.00/18.75 OK PROC., PARALLEL PROCESSING (1980 CONF.) 1980 P 386 80CH1569—3

354 25.00/18.75 OK PROC., PARALLEL PROCESSING (1981 CONF.) 1981 P 360 81CH1634—5

079 25.00/18.75 OK PROC., PATTERN RECOGNITION & IMAGE PROCESSING (PRIP ‘75) 1975 P 440 75CH0981—1

120 20.00/15.00 OK PROC., PATTERN RECOGNITION & IMAGE PROCESSING (PRIP ‘77) 1977 P 297 77CH1208—9

184 25.00/18.75 OK PROC., PATTERN RECOGNITION & IMAGE PROCESSING (PRIP ‘78) 1978 P 516 78CH1318—5

232 25.00/18.75 N/F 0 PROC., PATTERN RECOGNITION & IMAGE PROCESSING (PRIP ‘79) 1979 P 664 79CH1428—2

352 40.00/30.00 OK PROC., PATTERN RECOGNITION & IMAGE PROCESSING (PRIP ‘81) 1981 P - 626 81CH1595—8

085 12.00/ 9.00 M/F 0 PROC., PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE WORKSHOP 1976 P 182 76CH1169—2

124 12.00/ 9.00 OK PROC., PATTERN RECOGNITION APPLIED TO OIL IDENTIFICATION WKSHP 1976 P 173 76CH1247—6

75

ORDER PRICES AVAIL TITLES YEAR CODE PAGES IEEE NO

NO NM/M PUBL

392 22.00/16.50 11/81 PROC., PERS. COMPUTERS TO AID HANDICAPPED; JOHNS HOPKINS 1ST SEARCH FO 1981 P 322 THO0927
121 16.00/12.00 OK PROC., PICTURE DATA DESCRIPTION & MANAGEMENT WORKSHOP 1977 P 196 77CH1187-4
316 25.00/18.75 OK PROC., PICTURE DATA DESCRIPTION AND NGT (1980 WKSHP) 1980 P 304 80CH1530—5
284 20.00/15.00 OK PROC., QUANTITATIVE SOFTWARE MODELS WORKSHOP 1979 P 237 TH0067—9

381 12/81 PROC., REAL TIME SYSTEMS SYMPOSIUM 1981 P 81CH1700—4

351 20.00/15.00 OK PROC., RELIABILITY IN DISTRIBUTED SOFTWARE & DATABASE SYSTEMS SYMP. 1981 P 225 81CH1632—9
052 12.00/ 9.00 OK PROC., ROCKY MOUNTAIN SYMPOSIUM (1ST CONF.) 1977 P 310

181 16.00/12.00 OK PROC., ROCKY MOUNTAIN SYMPOSIUM (2ND CONF.) 1978 P 404 78CH1387—0

307 16.00/12.00 OK PROC., ROCKY MOUNTAIN SYMPOSIUM (3RD CONF.) 1979 P 155 79CH1463—9
335 14.00/10.50 OK PROC., SECURITY AND PRIVACY (1980 SYMP.) 1980 P 175 80CH1522—2

345 16.00/12.00 OK PROC., SECURITY AND PRIVACY (1981 SYMP.) 1981 P 180 81CH1629—5

007 20.00/15.00 M/F 0 PROC., SIMULATION SYMPOSIUM (8TH CONF.) 1975 P 324 75CH0984—5

008 20.00/15.00 M/F 0 PROC., SIMULATION SYMPOSIUM (9TH CONF.) 1976 P 375 76CH1055—3

140 20.00/15.00 OK PROC., SIMULATION SYMPOSIUM (10TH CONF.) 1977 P 413 77CH1177—5

164 20.00/15.00 OK PROC., SIMULATION SYMPOSIUM (11TH CONF.) 1978 P 368 78CH1327—6
222 22.00/16.50 OK PROC., SIMULATION SYMPOSIUM (12TH CONF.) 1979 P 350 79CH1376—3

289 22.00/16.50 OK PROC., SIMULATION SYMPOSIUM (13TH CONF.) 1980 P 338 80CH1492—8

333 22.00/16.50 OK PROC., SIMULATION SYMPOSIUM (14TH CONF.) 1981 P 297 81CH1590—9

103 8.00/ 6.00 OK PROC., SOFTWARE ENGINEERING (1ST INT’L CONF.) 1975 P 100 75CH0992—8

104 20.00/15.00 OK PROC., SOFTWARE ENGINEERING (2ND INT’L CONF.) 1976 P 700 76CH1125—4

187 20.00/15.00 N/F 0 PROC., SOFTWARE ENGINEERING (3RD INT’L CONF.) 1978 P 341 78CH1317—7

249 22.00/16.50 OK PROC., SOFTWARE ENGINEERING (4TH INT’L CONF.) 1979 P 464 79CH1479—5

332 30.00/22.50 OK PROC., SOFTWARE ENGINEERING (5TH INT’L CONF.) 1981 P 472 81CH1627—9

353 16.00/12.00 OK PROC., SOFTWARE ENGINEERING STANDARDS APPLICATIONS WORKSHOP 1981 P 152 81CH1633—7

208 16.00/12.00 OK PROC., SOFTWARE LIFE—CYCLE MANAGEMENT WORKSHOP (2ND CONF.) 1978 P 220 78CH1390—4

001 20.00/15.00 OK PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (7TH CONF.) 1975 P 342 75CH0968—8

002 20.00/15.00 N/F 0 PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (8TH CONF.) 1976 P 340 76CH1093—4

229 22.00/16.50 OK PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (11TH CONF.) 1979 P 249 THOO61—2

294 25.00/18.75 OK PROC., SOUTHEASTERN SYMPOSIUM ON SYSTEMS THEORY (12TH CONF.) 1980 P 395 80CH1576—8

221 20.00/15.00 OK PROC., SPECIFICATIONS OF RELIABLE SOFTWARE CONFERENCE 1979 P 237 79CH1401—9

142 12.00/ 9.00 OK PROC., TEST CONFERENCE (1973 CHERRY HILL TEST SYMP.) 1973 P 125 73CH0827—6

054 16.00/12.00 OK PROC., TEST CONFERENCE (1974 CHERRY HILL TEST SYMP.) 1974 P 261 74CH0909—2

060 16.00/12.00 OK PROC., TEST CONFERENCE (1975 CHERRY HILL TEST SYMP.) 1975 P 110 75CH1041—3

141 16.00/12.00 OK PROC., TEST CONFERENCE (1976 CHERRY HILL TEST SYMP.) 1976 P 105 76CH1179—1

147 16.00/12.00 OK PROC., TEST CONFERENCE (1977 CHERRY HILL TEST SYMP.) 1977 P 198 77CH1261—7

210 20.00/15.00 OK PROC., TEST CONFERENCE (1978 CHERRY HILL TEST SYMP.) 1978 P 301 78C81409—2

257 16.00/12.00 OK TUTORIAL: AUTOMATED TOOLS FOR SOFTWARE ENGINEERING 1979 T 270 EHOISO3

261 25.00/18.75 OK TUTORIAL: CENTRALIZED & DISTRIBUTED DATA BASE SYSTEMS 1979 T 262 ENO1S4—5

201 16.00/12.00 OK TUTORIAL: COMPUTER COMMUNICATION PROTOCOLS; A PRACTICAL VIEW OF 1978 T 264 EH0137—0

233 28.00/21.00 OK TUTORIAL: COMPUTER GRAPHICS 1979 T 433 EH0147—9

297 20.00/15.00 OK TUTORIAL: COMPUTER NETWORKS (2ND ED.) 1980 T 520 EHO162—8

139 12.95/ 9.95 OK TUTORIAL: COMPUTER SECURITY AND INTEGRITY 1977 T 448 EN0124—8

313 20.00/15.00 OK TUTORIAL: COMPUTER SYSTEM REQUIREMENTS 1980 T 364 ENO168-5

325 25.00/18.75 OK TUTORIAL: COMPUTER SYSTEMS FOR PROCES. DIAGNOSTIC ELECTROCARDIOGRAMS 1980 T 228 EHO17O-1

242 12.00/ 9.00 OK TUTORIAL: COMPUTER-AIDED DESIGN TOOLS FOR DIGITAL SYSTEMS 1979 T 174 EH0132—1
334 25.00/18.75 OK TUTORIAL: COMPUTERS & BUSINESS 1981 T 472 EHO177—6
369 25.00/18.75 OK TUTORIAL: DATA BASE MANAGEMENT IN THE ‘80S 1981 T 472 EHO181—8

260 16.00/12.00 OK TUTORIAL: DESIGN OF MICROPROCESSOR SYSTEMS 1978 T 262 EHO1SS—2

199 25.00/18.75 M/F 0 TUTORIAL: DIGITAL IMAGE PROCESSING AND SELECTED PAPERS 1979 T 732 EH0133—9

269 20.00/15.00 OK TUTORIAL: DISTRIBUTED CONTROL 1979 T 382 ENO1S3—7

212 14.00/10.50 OK TUTORIAL: DISTRIBUTED DATA BASE MANAGEMENT 1978 T 206 EHO141—2

209 16.00/12.00 M/F 0 TUTORIAL: DISTRIBUTED PROCESSING (2ND ED.)——SEE #363 1978 T 450 EN0127—1

363 25.00/18.75 OK TUTORIAL: DISTRIBUTED PROCESSING (3RD ED.) 1981 T 640 EH0176—8

299 28.00/21.00 OK TUTORIAL: DISTRIBUTED PROCESSING SYSTEMS; A PRAGMATIC VIEW OF 1980 T 616 EHO16O—2

258 20.00/15.00 OK TUTORIAL: DISTRIBUTED PROCESSOR COMMUNICATION ARCHITECTURE 1979 T 526 EH01529

267 20.00/15.00 OK TUTORIAL: DISTRIBUTED SYSTEM DESIGN 1979 T 414 EHO1S11

390 30.00/22.50 11/81 TUTORIAL: HUMAN FACTORS IN SOFTWARE DEVELOPMENT 1981 T 700 EHO1BS—9

266 25.00/18.75 OK TUTORIAL: INTERACTIVE COMPUTER GRAPHICS 1979 T 422 EHO1S6—0

338 28.00/21.00 OK TUTORIAL: INTRO TO AUTOMATED ARRHYTHMIA DETECTION 1980 T 332 EH01719

368 20.00/15.00 OK TUTORIAL: LOCAL COMPUTER NETWORKS (2ND ED) 1981 T 372 EN0179—2

304 20.00/15.00 OK TUTORIAL: LOCAL COMPUTER NETWORKS—-SEE #368 1980 T 345 ENO163—6

215 12.00/ 9.00 OK TUTORIAL: LSI TESTING (2ND ED.) 1978 T 190 EN0122—2

213 12.00/ 9.00 OK TUTORIAL: MICROCOMPUTER PROGRAMMING AND SOFTWARE SUPPORT 1978 T 200 EHO14O—4

259 16.00/12.00 OK TUTORIAL: MICROCOMPUTER SYSTEM DESIGN AND TECHNIQUES 1979 T 432 EHO1S9—4

340 14.00/10.50 OK TUTORIAL: MICROCOMPUTER SYSTEM SOFTWARE AND LANGUAGES 1980 T 232 EH0174—3

109 12.00/ 9.00 OK TUTORIAL: MICROPROGRAMMING 1975 T 318 75CH1033—0

310 20.00/15.00 OK TUTORIAL: MODELS & METRICS FOR SOFTWARE MGT AND ENGINEERING 1980 T 352 EN0167—7

339 14.00/10.50 OK TUTORIAL: OFFICE AUTOMATION SYSTEMS 1980 T 201 EN0172—7

367 25.00/18.75 OK TUTORIAL: PARALLEL PROCESSING 1981 T 498 ENO182—6

312 20.00/15.00 OK TUTORIAL: PROGRAMMING LANGUAGE DESIGN 1980 T 536 EH0164—4

391 28.00/21.00 11/81 TUTORIAL: PROGRAMMING PRODUCTIVITY——ISSUES FOR THE EIGHTIES 1981 T 520 EH0186—7

130 13.50/10.00 M/F 0 TUTORIAL: QUANTITATIVE MANAGEMENT——SOFTWARE COST ESTIMATING 1977 T 330 EHO129—7

366 20.00/15.00 OK TUTORIAL: SECURITY OF DATA IN NETWORKS 1981 T 250 EH0183—4

309 20.00/15.00 OK TUTORIAL: SOFTWARE CONFIGURATION MANAGEMENT 1980 T 452 EHO169—3

314 20.00/15.00 OK TUTORIAL: SOFTWARE COST ESTIMATING AND LIFE-CYCLE CONTROL (GETTING TUE 1980 T 356 EN0165—1

385 25.00/18.75 11/81 TUTORIAL: SOFTWARE DESIGN ENVIRONMENTS 1981 T

268 16.00/12.00 OK TUTORIAL: SOFTWARE DESIGN STRATEGIES 1979 T 426 EN0149—5

389 25.00/18.75 11/81 TUTORIAL: SOFTWARE DESIGN STRATEGIES (2ND ED.) 1981 T 530 EHO184—2

300 20.00/15.00 OK TUTORIAL: SOFTWARE DESIGN TECHNIQUES (3RD ED.) 1980 T 425 ENO161—0

219 16.00/12.00 01< TUTORIAL: SOFTWARE MANAGEMENT 1979 T 390 EH0146—1

211 16.00/12.00 OK TUTORIAL: SOFTWARE METHODOLOGY 1978 T 464 ENO142—Q

311 20.00/15.00 OK TUTORIAL: SOFTWARE SYSTEM DESIGN——DESCRIPTION AND ANALYSIS 1980 T 258 EHO166—9

207 16.00/12.00 OK TUTORIAL: SOFTWARE TESTING & VALIDATION TECHNIQUES (2ND ED.) 1978 T 430 EHO138—8

365 25.00/18.75 11/81 TUTORIAL: SOFTWARE TESTING & VALIDATION TECHNIQUES (3RD ED.) 1981 T 464 EHO18O—O

362 20.00/15.00 OK TUTORIAL: STRUCTURED PROGRAMMING: INTEGRATED PRACTICES 1981 T 290 EHO178—4

386 03/82 TUTORIAL: VLSI DESIGN & USE; TECHNOLOGY YOU NEED FOR 1982 T

288 22.00/16.50 OK TUTORIAL: VLSI——THE COMING REVOLUTION IN APPLICATIONS & DESIGN 1979 T 316 EHO158—7

NOTES: ALL BOOKS ARE AVAILABLE IN MICROFICHE OR IN SOFTCOVER AT PRESS TIME OR BY DATE SPECIFIED

BOOKS DESIGNATED “M/F~ ARE OUT OF PRINT AND AVAILABLE ONLY IN MICROFICHE

NM = NON-MEMBER PRICE; N = MEMBER PRICE; N/A = NOTAVAILABLE AT PRESS TIME

ALL BOOKS ARE SUBJECT TO AVAILABILITY AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE

76

IMPORTANT INFORMATION ON OISCOUNTS AND SHIPPING METHODS

• Rush nandling $1000 PER ORDER

• All unit prices include postage for 4th class book rate Overseas mail is shipoed sea mail

(10-12 weeks delivery) For priority shipping to U S or Canada, add S5 00 per book For

airmail service (2 week deliveryl to Mexico and all other foreign countries, please add

$15 00 per book

• Remember, member rates apply on the first copy for personal use only. Additional copies

of the same title are sold at full list price.

• Overseas orders must be prepald. Payments must be made in U S funds drawn on U S

banks

• No refunds or returns accepted after 60 days of shipment (90 days overseas)

• Occasionally. books are no longer available. In such cases, will you accept microfiche at

same price? No..........Yes_

• PrIces sublect to change without notice. Books sublect to availability

• Minimum telephone order — $5000

Title/Description

Subtotal

CalIfornia resIdents add 6% tax

Overseas purchasers: Remit U.S dollars on U S. Bank. TOTAL $

City/State/Zip/Country
0 Check Enclosed Optional Shipping Charge

Phone No

Purchase Order No
0 Bill Visa/BankAmericard

0 Bill Master Charge
Total $

Charge Card Number Erpiration Date Signature

Name (please print) Member No,

Address

PUBLICATIONS

ORDER FORM

IEEE Computer Society
P.O. Box 80452

Woridway Postal Center

Los Angeles, CA 90080

Catalog No. To assure prompt process

ing of your order, be sure to enter the 3-

digit number that appears ahead of each

publication description.

	40979_DataEngineering_Dec_1981_ Vol 4_ No 2.pdf

