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ACTIVITY-ORIENTED LIST

David S. Burns Kurt A. Schember

University of Southern Mississippi University of Texas at Arlington
Hattiesburg, Mississippi Arlington, Texas

ABSTRACT:

In many applications, file references are not random, in~

fact a small percentage of the file may account for the majority
of the files activity. Under these circumstances, a sequential
search of a file ordered on frequency of reference may exhibit

superior search statistics. The advantages of searching
Activity-Oriented Lists (AOL) are explored and algorithms given
for searching and maintaining AOL’s as file reference patterns
change. AOL’s would enhance the flexibility and power of CODASYL

SETS and other data-base products employing linked lists if

included as an update and search option.

Introduction

A substantial amount of time in computing is spent searching
list structures. An Activity-Oriented List (AOL) is one of a

variety of data structures which, when used in an appropriate area,

can substantially reduce both CPU and I/O overhead costs associated

with list searches. An activity—oriented list is searched sequen

tially and ordered on frequency of reference from the most fre

quently accessed to least frequently accessed record. It may reside

in main or auxiliary memory, and can be sequential or linked. The

implementation must, however, allow reorganization of the list as

frequencies or probabilities of reference change over time. Fre

quently referenced items will be located in a small number of

probes, since they will be near the head of the list. Less fre

quently referenced items will require more probes, and a sequential
search of the entire list is required to determine that a record

is not present, an obvious drawback under some circumstances.

Hence, activity-oriented lists are useful only if the majority of

searches are to a relatively small subset of the file, and the

desired record is present most of the time. Search t4me is fre

quently reduced for lists residing in auxiliary memory, since the

number of physical records that must be read to obtain the desired

logical record is often less than with other techniques. Records

in AOLs may be inserted or deleted efficiently whether the list

resides in main or auxiliary memory.

AOLs, in which most of the activity occurs in a small subset

of records for relatively long periods of time, occur frequently.
For example, compiler writers have noted that searches in compiler
symbol tables are not random. References to small groups of keys
tend to occur in clusters due to program logic. On a given day on

the stock exchange, most of the activity will generally be

restricted to a relatively small number of stocks. In an inventory

system, as little as 20 percent of a file may account for as much



as 80 percent of the search activity (1). Heising’s ~8o~2o” rule of

thumb goes on to say that the same rule may be applied to the most

active 20 percent of the file, i.e., 64 percent of the transactions

deal with the most active 4 percent of the file, etc. Hence, a

sequential search of a file ordered on frequency of use may yield
better search statistics than techniques based on ordered lists

or trees.

When an AOL is initially generated, it should be ordered in

descending probability of reference. If the probabilities are not

known a priori, then they can be approximated by maintaining a

count field in each node of the list. The nodes can then be

reordered periodically, based on the values of their count fields.

File reorganization should be based on how often the frequencies
of reference are expected to change. For example, a clothing store

may only need to reorganize its files seasonally (see Figure 1).

The list can be made more responsive to changing probabilities
by checking the count field during each reference. When it reaches

a specified number, the record should be exchanged with the record

preceding it in the list and the count field reinitialized. This

allows records to move toward the front of the list as their

activity increases.

When it is not desirable to maintain and check auxiliary count

fields, the desired record may simply be interchanged with the

preceding record after each successful search. Again, frequently
used records will migrate ahead of those less frequently referenced.

Note that the cost of maintaining the file must be paid after each

successful search, but that the time is much less than that

required to reorder a list based on a count field.

The previously mentioned methods of maintaining activity-
oriented lists may not be satisfactory if the referenced subset

of the list changes rapidly. Lists in which reference patterns
change rapidly may be maintained by moving each successfully located

record to the head of the list (4,6). This method can be efficient

only for a linked list, since a substantial number of records would

have to be moved in a sequentially allocated file to make room at

the head of the list after each successful search.

Many commonly published (2,3) search algorithms, such as binary
and Fibonacci for main memory and block and skip—chain searches

for auxiliary memory, assume that the list is in key order. Ar~

attractive feature of these algorithms is that they place an upper

bound on the number of probes required to locate a record,
determine a record is not in the list, (2,3) or they exhibit a

desirable expected number of probes to locate a record, under the

assumption of equal probability of access. For example, a binary
search has an upper bound of approximately log2N probes to locate

a random record in a list of N records. For a block or skip—chain
search, the expected number of probes is -~Wwhen the block size

or skip-chain length is -~W and all records have an equal
probability of access (3). Search methods based on ordered lists
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Figure 1: Inventory for a clothing store

maintained as an AOL for (a)
summer and (b) winter.

are frequently not optimal, however, if the file is subject to

frequent record changes and/or if only a small percentage of the

file accounts for most of the activity.

For sequential lists, new records can most efficiently be added

at the end of the list. Linked insertions are most efficiently

made at the front of the singly linked list or they may be easily

inserted at the rear in circularly or doubly linked lists. If a

list is ordered, it must first be searched to-find where a new

record should be inserted, then it must be rearranged to reflect

the new order. For sequential lists, this implies that approximately
half the records must be moved for an average insertion. For linked

lists only the necessary pointers must be changed. A similar eval

uation can-be made for record deletion. While insertion of new

records at the appropriate end of the list reduces overhead, the

resulting list is no longer ordered and the search methods previously
mentioned cannot be used. An alternative is to maintain a separate
unordered list of insertions and execute a sequential search of the

list. Periodically the ordered list may be updated from that

insertion list (usually when the list is not available for other

processing). Generally, records may be inserted more efficiently
in an unordered list than an ordered list.

In many data processing applications, search activity is

frequently restricted to a small subset of the total list for

relatively long periods of time. Tinder these circumstances, the

time required to locate a record in an unordered list using a

sequential search can be competitive with, or superior to, search

methods based on ordered lists. This is particularly true if

the list is large and resides on auxiliary storage. During a

sequential search, the key desired is compared to the key field of

(a)

(b)
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the current location in the list. If the keys don’t match, the

next logical record in the list is checked until either the desired

record is found or the end of the list is reached. Binary and

Fibonacci searches are not applicable to files in auxiliary storage
due to the potentially large number of input/output operations, or

in a virtual memory environment, where such a search may result in

excessive page faults. While tree searches and block or skip—
chain searches guarantee a reasonable expected number of probes,

they do not give preferential treatment to frequently referenced

records.

AOL Transaction Processing

The two broad categories of transaction processing addressed

by AOLs are (A) list changes, such as additions and deletions; and

(B) a record search followed by the possible updating of that

record.

AOL Changes

Deleting a record from an AOL is similar to deleting a record

from any other type of list. Once the determination to delete has

been made, then the efficiency of such a process is a function of

the storage medium and list organization (sequential vs. linked)

and has little to do with the fact that it is an AOL.

Almost the same can be said for additions. They may be trivial

or costly, but this is much more a question of organization and

storage type than the fact that the list is an AOL. However, the

application will determine, to a large degree, where the new record

should be placed, since key order is not maintained.

Records should be inserted into the list based on their

immediate probability of use. For example, if records have a high

frequency of use immediately after insertion then they should

generally be inserted at or near the front of the list amongst the

most active records. As with deletions, random insertions or

insertions at the front of the list can be most efficiently accom

plished in a linked list. If there is no reason to suspect high

activity after inserting a new record, then it can be inserted at

the end of the list, which can be accomplished easily and

efficiently in a sequential list. If insertions are to occur

frequently at the rear of a linked AOL, then it may be desirable

to maintain a pointer to the last record in the list, to aid in

inserting new records. It may also be desirable to keep a count

of insertions for lists which are only reordered periodically.
The list can then be reordered before the normal reorganization
period if the number of updates exceeds a threshold value that

experience has shown impairs search efficiency.

Consider as an example, a new flavor (Imitation Bosenberry
Mousse) being added to the current line of an ice cream store.

An introductory offer is usually made, initially stimulating a

high volume of business. Hence, the record for the new flavor

should be inserted at the head of the AOL. If there are N flavors
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and M memory locations to hold the list (N ~ M), addition of a new

flavor can be accomplished by storing the N older flavors in

ascending order of frequency in list locations 1 to N. The new

flavor would then be added in the N+lst location. Searching the

list would proceed by probing at locations N+l, N, N-i, etc. until

the desired item was either found or determined not to be in the

list (see Figure 1). As long as space remains, it would be

possible to efficiently make additions to the head of the list.

The reverse of this strategy could be employed if new additions

were expected to show very little initial activity. While addi

tions can be made efficiently, deletions will almost always be

relatively inefficient, since it is generally desirable to compress

the storage representation of a sequentially allocated list after

deleting an element.

AOL Searches

The efficiency of searching an AOL for a specific node is a

function of list organization and storage type. However, two

other factors that significantly influence search performance are

the use of a count field and whether or not the probability of

accessing a record is independent of previous searches. The

questions related to dependency are discussed first, as considera

tions here are applicable to any list organization or storage
medium. The question of count fields, however, is not. Both

Rivest (5) and Knuth (2) note that the storage allocated to count

fields could probably be put to use by other search methods in such

a way as to improve overall performance, so that the need for

AOL organization is frequently obviated for main memory searches.

Hashing would be a strong alternative, as well as an explicit tree

structure, particularly if reference probabilities are known

a priori. Consequently, count fields may be more productively used

with secondary storage. Examples of searching sequential linked

activity oriented lists follow.

An algorithm for searching a sequential AOL for a particular
value, say KEY, might appear as:

B:TRUE;
FOR I:N STEP -1 TO 1 WHILE (BTRUE) DO

BEGIN

IF LIST (I) = KEY ThEN
—

BEGIN B:=FALSE;
CALL FOUND

END;
END;.

The routine FOUND would manipulate the record just located as

desired.

Searching a linked AOL for the value KEY might be accomplished
as (see Figure 2):
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B:TRUE

P:HEAD

WHILE (P~NIL) AND B DO

IF Pt.INFO=KEY THEN B:=FALSE ELSE P:=Pt.LINK;

Note that the last node in the list has the value NIL for its link

field to indicate that it is the last node, hence, the search

will terminate properly if the desired item is not in the list.

HEAD and P are pointer variables where HEAD points to the front

of the activity—oriented list. P1~’.LINK refers to the LINK field

of the node pointed to by p. 4

Continual AOL Maintenance

Both methods described in this section update an AOL after

every successful search. This allows the AOL to be more respon

sive to rapid changes than periodic reorganizational schemes.

Transposition

Using the transposition heuristic (Rivest) (R.~R~+i) ,
a

record is exchanged with the one in front of it fo±lowing a

successful search. Rivest has shown that this is the optimal
search strategy, provided that the probability of searching for a

given element is fixed, but independent of previously performed
searches. A distinct advantage of this scheme over the move-to-

the-front heuristic, is that the cost of reorganization after

each search is essentially constant for either sequential or

linked allocation. An algorithm to perform an AOL search with

transposition on a linked list follows, assuming that a match

will occur.

B :TRUE;P :FIEAD;T1 :HEAD;T2 :HEAD;
WT-IILE (P~NIL) AND B DO

IF P1~.INFOKEY THEN B:FALSE

ELSE BEGIN T2:T1;Tl:P;
P:P1~.LINK END;

IF P~HEAD THEN BEGIN
—

T2’t.LINK:P;
Tl~t.LINK:P1.LINK;
P1.LINK:T1;
IF T1HEAD THEN HEAD:=P END;

Note that Ti is always one node behind P and T2 is always one node

behind Ti. Figure 3 shows an example, with the adjusted links as

dotted lines. A special case exists if the desired record is the

first or second record in the list. If the desired record is

already at the head of the list then no exchange is required. If

the desired record is the second physical record in the list, then

it is necessary to set HEAD pointing to it after adjusting the

link fields. This is accomplished by treating HEAD as the link

field of a special node pointing to the first record in the list.
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INFO LINK

HEAD A 1 }~ ~c ~NIL1

Move To The Front

Figure 2.

This search heuristic moves a~ record to the front of the AOL

after each successful search (2,5). This action works reasonably
well under the assumption of successive searches being independent
of one another, but can be superior in an environment where one

access implies that several more accesses to the same record are

likely.

Implementing the move-to-the-front algorithm would incur

about the same cost as transposition for a linked structure,
but would be more costly to implement sequentially, since a

portion of the file fron R-~ to R~_1, where R1 is to become the

first record, must be moved.

Periodic AOL Maintainence

Consideration is given here to methods for periodically
reordering activity-oriented files based on count fields~. If the
file is sequentially allocated and resides entirely in main memory,

any appropriate minimal memory sort such as sheilsort, quicksort,
or heapsort may be used to reorder the list based on the count

fields. In a multilist system, where the entire file cannot

reside in main memory at one time, several possibilities exist.
It may be possible to extract the count fields from each record
and store them in a sequential sort list in main memory along
with pointers to the original records. If the resulting list
fits in main memory, then an internal sort may be used and the

INFO LINK

Figure 3.
N

— —

/
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KEY COUNT LINK OTHER KEY(S) AND

FIELD FIELD FIELD ASSOCIATED COUNT AND

1 KEY

1

KEY

1

LINK FIELDS AND

FIELDS IN RECORD

NON-KEY

1

2

3

TABLE (K)

1

2

3

POINT(K)

1

2

3

TABLE (K)

1

2

3

POINT (K)

(c)

1

(e)

Figure 4: (a) general node format for a multilist file

with several AOLs passing through each node

(b) list before reorganization (c)TABLE

and SORT arrays after Algorithm BST (d) TABLE

and POINT after sorting (e) adjusted list

after Algorithm AL.

(a)

HEAD~
1 2 3

(b)

HEAD JONES 1 .3 i

I
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pointers used to reorder the linked list. If the resulting list

would exceed the available main memory, then the records them

selves or the sort list may be sorted using an external sort or

utility, with the pointers then used to reestablish the logical
order of the list independently of any physical reordering. Note

that any sublist passing through a multilist file may be reorgan
ized independently of other sublists passing through the records.

The following algorithm is given as an example for reordering a

list based on the count field associated with the given key field

in a multilist organization. For convenience it is assumed that

a table can be generated with an entry for each record consisting
of the value of the count field and pointer to the physical loca

tion of the record in auxiliary or main storage. It is further

assumed that this table will fit in main memory. See Figure 4.

Algorithm BST (Build Sort Table)

BST1: Set PE—HEAD,K=O
BST2: WHILE P#NULL BEGIN

TABLE(K)4— KEY. COUNT(P)
POINT(K)~—P;
P~—LINK(P)
END;

The algorithm for building the sort table assumes that the

first record in the list is pointed to by HEAD. P is a pointer
variable used to traverse the list and build the sequentially
allocated sort table. The LINK field of the last record in the

file contains a special value, NIL, to indicate that it is the

last record in the file. The notation KEY.COUNT (P) refers to

the count field associated with key KEY of the record indicated

by P. Once generated, the sort table and associated table of

pointers should be sorted into descending order on the count field.
Now assuming a head of list variable, HEAD, the pointers in the
file may be adjusted as follows:

Algorithm AL (adjust links)

ALl: Set 1-JEAD:=POINT(i) ;LINK(POINT(N)) :NIL;
and KEY.CO1JNT(POINT(N)) :0;

AL2: FOR I:l TO (N-i) BY 1

BEGIN LINK(POINT(I)) :POINT(I+l);
—

KEY.COUNT(POINT(I)) :0

END;

After executing algorithm AL, the file will logically be
reordered without physically moving any records or distributing
other lists running through the same records. The count fields
have been re-initialized for gathering frequency—of—use informa
tion for the next file reorganization.
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Activity-oriented lists are particularly useful in data base

applications where each record in the file has several sublists

running through it. The sublists may be maintained in key order,
as activity—oriented lists, or in any other order desired.

Multilist file organizations allow records to appear in a different

logical order on different lists independent of their physical
order. Naintaining all or some of the sublists as activity-
oriented lists may allow for economies in search time.

4

In large data base applications, the entire file frequently
cannot be maintained in main memory or even high speed auxiliary
memory. For example, a large manufacturing corporation may find

it necessary to keep its inventory on tape files due to its size.

However, most of the transactions during any given period would

probably involve only a small portion of the list. Hence, when

the inventory system is brought on-line, the most frequently
accessed records can be kept in main memory and records with less

activity in high speed direct access storage, and low activity
records are allowed to remain on tape. Note that activity—oriented
lists allow for the natural migration of records across the

storage hierarchy based on their frequency of use.

Summary

In summary, activity—oriented lists allow for economies in

the time required to search a file when a small portion of the

file accounts for most of the activity. However, they are not

the solution to every file searching problem. Unless search

activity approximates Heising’s “80—20 rule”, or the list is very

short, search efficiency. degrades rapidly. This degradation is

particularly noticable if all or part of the file resides in

auxiliary memory and a large number of accesses to auxiliary memory
are required to find the desired record. However, AOLs do give
preferential treatment to highly active records in files where

search activity can be restricted to a small subset of the file

for relatively long periods of time. AOLs also exhibit the

ability to maintain a high level of performance by adapting as

the referenced subset of a file change.
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ACM-SIGMOD INTERNATIONAL CONFERENCE
ON MANAGEMENT OF DATA

Y. Sagiv
Department of Electrical Engineering and Computer Science

Princeton University
Princeton, New Jersey 08540

The ACM-SIGMOD International Conference on Management of Data
was held in Austin, Texas, on May 31 through June 2. Approximately 250
people attended the conference, which for the first time provided parallel
sessions: one session devoted to the presentation of papers, and the
other to a panel discussion. This structure embodied a wide spectrum of
interests ranging from practical issues to formal topics.

The papers discussed a variety of subjects and indicated the
high quality of the program. Distributed databases were considered in a
number of papers that covered such problems as concurrency, query pro
cessing, and integrated views. Several papers were devoted to languages,
models and data dependencies that provide better tools for expressing
data semantics. Other papers dealt with topics such as methods for im
proving the performance of databases (e.g. automatic design, performance
evaluation of access paths, data structures, and query optimization), query
processing and practical issues.

The panel discussions included sessions such as natural language
interfaces, database machines, managing the data resources and more. The
panels gave rise to stimulating discussions and contributed to the success
of the program. The only problem with which some of the participants were
faced was the wish to be in both parallel sessions at the same time. Unfor
tunately the proceedings of the conference (available from ACM) includes
the papers, but does not have a detailed documentation of the panel dis
cussions.

Finally, the local arrangements were excellent and earned the
appreciation of everyone.

. . . .

TC/DBE MEMBERSHIP APPLICATION/RENEWAL FORM

To become a member of the TC/DBE and be on the mailing list for the Data Base
Engineering Bulletin, please return this form or a copy of it to:

IEEE TC/DBE
Department of Computer Science

University of Illinois, Urbana, II 61801

NAME
________________________

(please printl

INSTITUTION
_________________________

ADDRESS
__________________________
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COMPILATION OF DATA BASE QUERIES

Randy H. Katz

Electronics Research Laboratory
University of California

Berkeley, CA 94720

This report describes the implementation of a compiler for data
base queries. The notion of “levels of compilation” is introduced to

classify existing query compilers and to propose a family of such compilers
for the INGRES relational data base system. The implementation of one

member of this family, a compiler which parses queries at compile-time,
is described.

Comparisons of the time and space requirements for different
levels of compilation are presented. A discussion of possible benefits
and penalties of the compilation approach is presented. A description
of the work required to implement a complete compilation oriented query
processing system for INGRES is given.

This work was done in partial fulfillment of the degree of Master
of Science. Research was supported by Army Research Office under Grant
DAAG29- 76-G-O245.

INTELLIGENT MAGNETIC BUBBLE MEMORIES

Mario Jino

Departamento de Engenharia Electrica/EL
Faculdade de Engenharia de Campinas-UNICAMP

C.P. 1170, l3lOO-Campinas, SP-BRAZIL

In this report, we are concerned with the design of intelligent
magnetic bubble memories. It is our intent to explore ways of incorporat
ing the novel bubble chip organizations and bubble movement operations in

the design of such memories. In particular, we evaluate the performance
of various file processing algorithms and memory organizations which can be

achieved through their use. Retrieval times per word and per page are the

parameters used to evaluate the different memory organizations. Perform

ance of hierarchical memory systems using bubble memories is discussed.

The unique features of magnetic bubble memories are used in designing
algorithms for elementary file processing operations such as sorting, merg

ing and clustering and for basic relational algebraic operations.

This work was done in partial fulfillment of the degree of Doctor

of Philosophy at the University of Illinois, at Urbana-Champaign. It was

published as a Technical Report UIUCDCS-R-78-900, Department of Computer
Science, University of Illinois at Urbana-Champaign. Research was supported
by the National Science Foundation under Grant MCS—77-279lO and by Universidade

Estadual de Campinas and Fundacao de Amparo a Pesquisa do Estado de Sao

Paulo.
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