
Data Base

Engineering

RESEARCH INTO DATABASE MACHINES AT ThE UNIVERSITY OF UTAH

Diane C. P. Smith and John Miles Smith Page 1

COST ANALYSIS OF DATA DISTRIBUTION

Geneva C. Belford and John D. Day Page 5

WORKSHOP ON OPERATING AND DATABASE MANAGEMENT SYSTEMS,

MARCH 21—22, 1977, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS

PROGRAM

ABSTRACTS OF PAPERS

EDITOR’S NOTES Back Inside

Cover

MEETINGS OF INTEREST

A Quarterly Bulletin published by
the IEEE Computer Society Technical Committee on

Data Base Engineering

Back Inside

Cover

Vol. 1 No. 1 Contents March 1977

MEMBERSHIP LIST OF TC ON DATABASE ENGINEERING Page 24

Page 13

Page 15

Data Base Engineering Bulletin

Volume 1, No. 1.

March, 1977

A Quarterly Publication of the IEEE Computer Society
Technical Committee on Data Base Engineering

Chairman David K. Hsiao

Department of Computer and

Information Science

The Ohio State University

Columbus, Ohio 143210

(6i4) 422—3083

Vice—Chairman Vincent Lum

IBM Research Laboratory

Monterey and Cottle Roads

San Jose, California 95193

(1408) 256—76514

Editor Jane W. S. Liu

Department of Computer Science

University of Illinois

Urbana, Illinois 61801

(217) 333—0135

Editorial Committee

Roger W. Elliott

Department of Industrial

Engineering
Texas A & M University

College Station, Texas 77844
(713) 845—5531

Michael E. Senko

IBM T. J. Watson

Research Center

Yorktown Heights, New York 10598
(914) 945—1721

Edward Feustal

Rice University
P.O. Box 1892

Houston, Texas 77001

(713) 527—8101

Carlo A. Zaniolo

Sperry Research Center

100 North Road

Sudbury, Massachusetts 01776
(617) 369—4000

Data Base Engineering Bulletin is a quarterly publication of the IEEE Computer

Society Technical Committee on Data Base Engineering. Its scope of interest

includes: data structures and models, access strategies, access control techni

ques, data base architecture, data base machines, intelligent front ends, mass

storage for very large data bases, distributed data base problems and techniques,
data base software design and implementation, data base utilities, etc.

Contribution to the Bulletin is hereby solicited. New9 items, letters, techni

cal papers, book reviews, meeting previews and summaries, etc., should be sent

to the Editor. All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical papers are unrefereed.

Opinions expressed in contributions are those of the individual author rather

than the official position of the TC on Data Base Engineering, the IEEE Computer
Society, or organizations with which the author may be affiliated.

Membership in Data Base Engineering Technical Committee (at $5 per year) is open

to IEEE Computer Society members, student members, and associate members. Non—

members of IEEE Computer Society may join the Technical Committee (at $10 per

year). Library subscriptions are available (at $10 per year).

Research into Database Machines

at the University of Utah

Diane C.P. Smith

John Miles Smith

Department of Computer Science

University of Utah

The current concept of a “database machine” is that of a machine

in which relatively expensive relation (or file) processing functions

such as boolean searching, cross—referencing and updating are consigned

to hardware 1, 4, 5, 8]. These functions, oriented towards relation-

at-a-time processing, are higher-level than the “GET” and “PUT” primitives

of current tuple (or record)-at-a-time processing. The attraction of

this is in its promises of a more rapid execution of these functions and

a representation of information closer to the way it is visualized by

users.* However, the database machine concept can be further extended

by considering even higher-level functions, which in addition to searching

and updating, maintain consistency within and between relations. Data

base machine research at the University of Utah is concerned both with

the investigation of boolean-search associative devices and with the develop

ment of consistency maintaining functions appropriate for hardware (as

well as software) implementation.

The investigation of boolean-search associative devices has taken

three forms:

1) the development of an architecture for a head—per—track rotating

associative device 4],

2) a study of efficient use of the boolean—search primitive to

*This latter feature is important to the production of more reliable data

base software.

1

implement additional relation—oriented functions such as sorting

3], and

3) a study of cost-effective ways of providing the boolean-search

primitive to large scale database applications 2].

The architecture developed for head—per—track rotating associative devices

is called the rotating associative relational store (RARES). It is an

associative memory constructed by adding a relatively inexpensive content-

addressing mechanism to an existing head-per-track rotating device. It

is distinct from other designs in that it utilizes a novel “orthogonal”

storage layout. This layout allows a high output rate of selected tuples

even when a sort order in a stored relation must be preserved.

The study of the search function as a primitive in defining other

database functions concentrated on the sort function. An algorithm called

the “bucket sort” was developed to exploit the associative search capability.

Compared to the standard sort-merge algorithm, this algorithm requires

at most the processing time necessary for the initial run generation and

the first pass of the merge operation.

The designs of rotating associative devices are currently based

on head—per-track technology. Such associative devices can be used effec

tively for small scale (<lO~ byte) applications. However, the order of

magnitude cost differential (for current and predicted for new storage

technologies) between head-per-track and movable—head devices dictates

that large scale databases be stored on the movable-head devices. To

make the boolean search capability available to large scale applications,

either a head-per-track associative device can be used in a memory hier

archy as a cache into which data can be paged from conventional movable

head devices, or the search logic can be moved to the heads of the movable—

head devices.

2

The associative cache and the associative movable-head devices can

be thought of as two different ways of distributing search logic. In the

associative cache approach, the logic is concentrated on a small number

of head-per—track devices, one logic unit per track. If the data items

to be located are not in the cache, more data must be paged in from

conventional movable-head devices. In the associative movable-head

device approach, the logic is distributed across a large number of movable-

head devices. If the data items to be located are not found on the

cylinder being accessed, the head (and logic) are moved. Thus, the

relationship between the two approaches is that a page transfer in one

is conceptually equivalent to a head movement in the other. However,

if both approaches use the same amount of parallelism, the associative

cache is less efficient than the associative movable-head devices.

The tradeoffs between these two approaches are being investigated further

and the design of an associative movable-head device is being developed.

Research at the University of Utah has also concentrated on the

development of data accessing primitives that will gu~rantee consistency

within and between relations 6, 7]. This investigation is based on

a semantic approach that treats an integrated database as a model of

some real—world system. Constraints existing in the real-world system

must be represented in the model (database) by the actions of the operators

and the interrelational structure of the database. For example, if a

relation is to model a set of distinct real-world objects, there must

be a unique identifier associated with each tuple in the relation. An

insert should maintain the invariance of this condition. Similarly,

if the existence of a value for some domain in one relation implies

3

the existence of an object represented by a tuple in another relation,

a delete in this second relation must maintain the invariance of this

condition. In 6] and 7] a set of invariants is identified that capture

constraints true of all real-world systems. The universality of these

invariants recommends them for hardware support. However, the method

of providing this support remains to be determined.

References

1. Berra, P.B., Some problems in associative processor applications

to data base management. Proc. AFIPS 1974 NCC, Vol. 43, AFIPS Press,

Montvale, N.J., pp. 1-5.

2. Lin, C.S., Report on Associative Movable-head Devices, in preparation.

3. Lin, C.S., “Sorting with Associative Secondary Storage Devices”,

submitted for publication.

4. Lin, C.S., D.C.P. Smith and J.M. Smith, “The Design of a Rotating

Associative Memory for Relational Database Applications”, ACM Trans.

Database Systems Vol. 1, No. 1 (March 1976), pp. 53-65.

5. Ozkarahan, E.A., S.A. Schuster, K.C. Smith, PAP-An associative processor

for data base management. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press,

Montvale, N.J., pp. 379-387.

6. Smith, J.M. and D.C.P. Smith, “Data Base Abstractions: Aggregation”,

to appear in Comm. ACM 1977.

7. Smith, J.M. and D.C.P. Smith, “Data Base Abstractions: Aggregation

and Generalization”, to appear in ACM Trans. Database Systems 1977.

8. Su, S.Y.W., and G.J. Lipovski, CASSM: A cellular system for very large

data bases. Proc. of Very Large Data Base Conf., Sept. 1975, pp. 456-472.

4

Cost Analysis of Data Distribution*

by

Geneva C. Belford

and

John D. Day

Center for Advanced Computation

University of Illinois at Urbana—Champaign
Urbana, Illinois 61801

Introduction

The advantages of distributing a data base in a network

environment have been the subject of much discussion. There has been a

scarcity, however, of research attempting to quantify these advantages

or to investigate the various tradeoffs and to determine just how great

the advantages are. Because of this lack of quantitative data, we

recently undertook a preliminary study of the costs of data distribution.

Our goal was to gain some understanding of where the major costs are

incurred and under what circumstances distributing a file system is

worthwhile. Space limitations preclude our giving more than an overview

of the work here. Readers interested in the details may consult our

report 1].

The Model

For many of the cost—related questions that arise in the de

velopment of a distributed data base system (such as those concerned

with the costs of queries, updates, backup, recovery, etc.), the system

can at first be viewed as a storage hierarchy. That is, to a local

*

This work was performed as part of Contract DCA100—75—C—0021 with the

Command and Control Technical Center — WWMCCS ADP Directorate of the

Defense Communications Agency.

5

process or user submitting a query to a remote site, storage devices at

that site appear as further levels of the hierarchy. From this point of

view the network is another channel with some special cost considera

tions. We have constructed and analyzed such a simple, storage—hierarchy

model of distributed data processing. This approach allowed us to

investigate the tradeoffs offered by various strategies without becoming

involved in extraneous issues, such as which remote site in the network

is the best location for the data. In future refinements of the model,

we plan to include effects of processing data at the remote site in

order to take advantage of cheaper computation or possible parallelism.

Modeling storage hierarchies Well before networks existed,

the question arose as to where one should place a given file in a

storage hierarchy — i.e., a set of memory devices of varying accessi

bility (core, disk, tape, etc.) connected to a single computer. A

particularly comprehensive cost model 2] for this problem has recently

been developed by Lum and co—workers at IBM Research (San Jose). This

model differentiates between random and sequential forms of data access

and includes considerations of staging, channel costs, CPU overhead,

etc. Because of its completeness, we considered this model an appropriate

one for extension to the network case.

Lum’s model primarily addresses the problem of “data staging”

or “data migration”. In other words, when a file or data set is not

being used (i.e., is inactive) it is stored on one device (usually a

relatively slow, Inexpensive one). Then, when the data set is to be

used, it is moved to a faster, more expensive device so that the program

will waste fewer resources waiting for data. The basic question addressed

is: given the accessing characteristics (number of reads and writes,

proportion of time the file is in use, etc.), where in a given hierarchy

6

should the data set be stored when it is inactive and where should it be

stored when it is active?

Lum develops an objective function which gives the cost of

accessing a data set which is stored on one device when inactive and

another (possibly the same device) when active. In his model the

entire data set is moved from the inactive device to the active one.

(We relaxed this requirement in our model.)

The selection algorithm is then quite straightforward. The

objective function is evaluated for each pair of devices in the hierarchy.

The lowest cost then indicates on which pair of devices the data should

be located.

Lum and his co—workers make several simplifying assumptions,

most of which can be relaxed at the cost of a more complex cost function.

They assume that, for data sets, system paging activity will not signif i—

cantly affect cost. However, it would probably be necessary to relax

this constraint if one wished to consider costs incurred by program

activity. They further assume that transfers are direct rather than

through core and that there are no flow control problems (i.e., a fast

device can always accept data from a slow device). They also assume

that transfers are not constrained by the capacity of the device the

data set is being moved to. Fortunately, these last two assumptions can

both be dropped at the cost of a more complex cost formula. When a

network is added to the hierarchy, flow control cannot be ignored.

There are, however, more troublesome deficiencies in the IBM

group’s approach. First, they implicitly assume a very low rate of data

access. Costs which may in fact grow very rapidly with increased load

are assumed to be proportional to the number of accesses or to the

amount of data handled. Second, they include a number of terms which

7

represent lost CPU time induced by delays in accessing devices. This

seems to represent an effort to parcel out, in a simple way, the cost of

the inevitable CPU idle time among the various processes. At the same

time they omit some real CPU costs which are incurred in the data transfer

process and which may be significant. In addition, they assume that

only CPU idle time adds significant costs and ignore costs due to other

idle equipment, such as channels.

Adding a remote site to the hierarchy In spite of our reserva

tions, we decided to work initially with Lum’s model. We began with

Lum’s cost formula, with its terms for storage, data transfer, and

accessing, and added network terms — including costs for data transfer

to, from and over the network, as well as protocol costs. In adding

these terms, we felt that, if only for consistency, we should follow the

spirit of Lum’s model. Hence the extended model also has terms involving

costs of “lost” CPU idle time.

The cost formula we arrived at has six components:

COST =

rstorage~
+

cost to move data between inactive

cost) ~remote level and highest remove level

+
f cost to move data between highest\

+
rnetwork

remote level and the network J ~costs

+
f cost to move data between the

+
(costs for the process)

network and the local active level J <‘ to access the local

active level

The basic situation to which our formula is designed to apply

can be described briefly as follows. A local process, active for a portion

of each day, manages the queries to and updates of a data base. The data

base is stored permanently on a mass storage device at a remote site on

the network. When the local process becomes active, it causes the data

base to be moved to a rapid—access device at the local site. At the end

8

of the day’s work, the data base is moved back across the network to

the permanent storage location.

Notice that moving the data base over the network is a multi—

step process. The data must be first staged at the remote site, then

moved onto and across the network, and then finally picked up from the

network by the local host. In contrast, local data staging from one

device to another involves only one such transfer. Essentially, the

third, fourth, and fifth terms of the cost formula are missing when the

permanent storage device is local.

Cost Analysis

It is clear that, in order for remote storage to be cost

effective, there must be sources of savings large enough to counter

balance the three additional cost terms in the network model. Further

more, examination of the cost formula shows that potential savings are

limited to the first two terms. That is, either storage or staging (or

both) must be cheaper at the remote site than they are locally. This is

not an unreasonable requirement. However, the magnitudes of the cost

differentials are critical.

To see how large the savings must be, we have carefully

examined typical costs incurred in transferring data over a network.

The actual network costs have two major components: the setup cost for

using the network and the cost of the traffic sent on the network. The

former includes protocol negotiation and processing costs. The latter

includes the cost of transmitting protocol messages as well as trans

mitting the data base itself. Not surprisingly, the major cost —

generally by an order of magnitude or more — is that of actually trans

mitting the data base across the network. (The costs for data transfer

between host and network can become comparable when the network bandwidth

is very small.)
9

At the present time, it is not cheap to transmit a large

amount of data across a network. One quoted commercial rare is $1.25

per 1000 125—byte packets. A one—megabyte data base would then cost $10

to ship. If this much data is staged frequently (daily, say) from a

remote site, the cost is clearly far more than could possibly be saved

because processing and/or storage is cheap at the remote site. (Disk

storage of a megabyte for a month is unlikely to cost more than $200

anywhere. Thus, even if remote storage is free, the cost differential

will not be enough to offset the network costs. It is also unrealistic

to hope for large differentials in processing costs.)

As the amount of data shipped back and forth across the network

decreases, the likelihood that a distributed strategy will be cost—

effective increases. We have therefore used our cost formula to get a

preliminary idea of the value of local data caching. Under this strategy,

the local system maintains a partial copy of the data set. The contents

of this copy are determined by the results of past accesses or in some

cases by some knowledge of what will be needed. When the user requests

data, the system first looks to see if the data is local; if so it is

fetched from the local storage medium; if not then it must be retrieved

from the master copy over the network. This is a sort of “network

working set” strategy. Investigating the properties of such a strategy,

we found a rather steep rise in cost as the fraction of requests that

must use the network increased. Of course, whether or not most requests

can be answered locally depends upon the size of the local store and the

degree of locality exhibited by the requests. However, if the fraction

of remote requests can be kept low, it appears that significant savings

can be achieved by the local caching of data. Further study is needed

of the locality properties of data base activity, the goal being to

10

determine what the size of the local store must be so that a large

fraction of the requests may be satisfied locally.

Conclusions

The main result of our study was that heterogeneity is a

necessary requirement for remote storage to be cost effective. This

conclusion is intuitively reasonable. Transferring data over the net

work must cost something — and this additional cost is inevitably

incurred if the data is stored at a remote site. In order to offset

the network costs, the remote site must be significantly cheaper, in

some respect, than the local site.

It should be emphasized that in most situations the cost

differential due to heterogeneity must be sizable — not small percent

ages, but orders of magnitude. As the amount of data transported over

the network decreases, the network costs can decrease to the point where

smaller cost differentials can make remote storage economical.

There are several ways in which the necessary heterogeneity

may be achieved:

1. Excess capacity That is, some sites may be less heavily

loaded either because of usage patterns or because of system

differences. Thus, even though “real” system costs are not

very different, it may be worthwhile to store the data base at

a remote, underutilized host.

2. Inexpensive storage Special facilities, such as the ARPA

Network Data Computer, may be available at one site.

3. Artifically—induced heterogeneity This may be achieved by

arbitrarily setting charging rates at some sites so that they

are significantly cheaper than at other sites. (There could

be various policy reasons for doing this — including encouraging

the use of underutilized sites.)

11

At this point it is probably a good idea to remind the reader

of the limitations of our model. The model only describes data staging

and no other aspect of distributed data management. The questions we

raised with respect to Lum’s model carry over. On the other hand, the

questionable terms in the model are usually small enough so that their

probable inaccuracies are unlikely to seriously affect the kind of broad

conclusions that we want to draw.

In particular the model seemed adequate for an initial study

of the key question: Is it ever more economical to store data at a

remote site (instead of locally) and bring it over the network when

needed? We have used our model to study this question. We believe that

the results of the study have validity for real systems. Improvements

in the model are not expected to change our conclusions significantly.

References

1. Day, J.D. and Belford, G.G. A Cost Model for Data Distribution.

CAC Document Number 179 (1975) Center for Advanced Computation,

University of Illinois at Urbana—Champaign, Urbana, Illinois.

2. Lum, V.Y.; Senko, M.E.; Wang, C.P.; and Ling, H. “A Cost Oriented

Algorithm for Data Set Allocation in Storage Hierarchies,” CACM 18,

(1975) pp. 318—322.

12

WORKSHOP ON OPERATING AND DATA BASE MANAGEMENT SYSTEME

Norris University Center

Northwestern University
Evanston, Illinois 60201

March 21—22, 1977

Sponsored by IEEE Computer Society
(Technical Committees on Data Base Engineering and Operating Systems)

and Northwestern University

ADVANCED PROGRAN

MONDAY - March 21

Registration Material Pick—up

ppening Session

Chairman: S. S. Yau

Northwestern University

“An Overview of the Critical Issues in the

Area of Operating and Data Base Manage
ment Systems,

“
R. Muntz, UCLA

COFFEE BREAK 9:45 a.m.

Session I 10:15 a.m.

Data Base/Operating Systems Environment

Chairman: G. J. Popek
UCLA

“Conveyance of Operating and Data Manage—
sent Systems,” W.D. Haseman, Carnegie—
Mellon University, Pittsburgh, PA. (2)

“System R and Its Operating System Envi-’

ronment,” M.W. Blasgen, IBM Research Lab.

San Jose, CA. (4)

“User, Operating System, Database Manage
ment System: Global Structure and Func

tional Dependencies,” K.J. McDonell,

University of Alberta, Canada (13)

“The Influence of the Operating System in

the Design and Implementation of Trigger
Subsystem for Database System,” K.P.

Eswaran, IBM Research Lab., San Jose, CA.

(7)
DISCUSSIONS

Session II 1:45 p.m.

Security in Database and Operating Systems

Chairman: R. S. Gaines

Rand Corporation, Santa Monica,CA.

“The Relationship Between Operating Systems
and Data Base Security: A Survey,” E.P.

Fernandez and C. Wood, IBM Los Angeles
Scientific Center, Los Angeles, CA.

“Similarities and Differences Between

System and Data Management
Security—A Study Toward a Kernel

Design of Database Security Software,”
D. Downs and G. Popek, University of

California at Los Angeles, CA.(3)

“The Use of Reference ~nitor Technique
for Data Security in Computer Systems,”
M. Grohn and G. Kirkby, I. P. Sharp Assoc.

Ltd., Ottawa, Canada. (1)

DISCUSSIONS

COFFEE BREAK 3:45 p.m.

Session III 4:15 p.m.

Performance Evaluation and Design Issues

Chairman: J. Mehl

IBM Research Lab., San Jose, CA.

“Performance Evaluation of Generalized

Management Information System on a

Virtual Memory Operating and Computer

System——A Case Study of GMIS on VM/37O,”
L.E.S. Sarmento and P.S. Chen, M.I.T.,

Cambridge, MA. (5)

“Database Reorganization Issues Related to

Operating and Data Management Systems

Interface,” G.E. Sockut and R.P. Goldberg,
Harvard University, Cambridge, MA. (8)

“An Analysis of Distributed Free Space in

an Operating and Data Management Systems
Envirotunent,” Y.R. Chin, Northwestern

University, Evanston, IL. (6)

WINE AND CHEESE

(Room to be

PARTY 6:00 p.m.

Announced)

TUESDAY — March 22

Session IV 9:00 a.m.

Concurrency, Integrity and Access to

Distributed Data

Chairman: P. Denning
Purdue University
West Lafayette, IN.

“A Deadlock Model for Database and Opera

ting Systems,
“

S.B. Yao, Purdue Univer

sity, West Lafayette, IN. (11)

Note: The number in parenthesis appearing at the end of a paper corresponds to the

numbered abstract to be published in the March, 1977 issue of the Newsletter of

the Technical Committee on Data Base Engineering, which will be distributed at

the Workshop.

8:30 a.m. “The Requirements for a Secure User

Interface to Database and Operating
Systems,” S.R. Anes, Jr., The FIITRE

9:00 a.m. Corporation, Bedford, MA. (10)

13

Session IV cont’d Session V 11:30 a.m.

“Extending the Concept of Abstract

Data Types (for the Synchronization

of Concurrent Accesses to Shared

Resources in Operating Systems) to

the Representation of Database

Integrity Constraints and Views,”
H. Weber, IBM Research Lab.,
San Jose, CA. (9)

“Resolving Some Concurrent Update
Problems without Looking,” P. Bern

stein, C.H. Papadimitriou, and J.B.

Rothnie, Harvard Univ., Cambridge, MA.

(12)

“Intelligent Coupling of the User to

Distributed Database Systems,” S.K.

Chang~and B.H. McCormick, University
of Illinois, Chicago, IL. (14)

DISCUSSIONS

COFFEE BREAK 11:00 san.

Special Topics

Chairman: C. R. Carlson

Northwestern University

“On the Retrieval Time and Storage Space of

Doubly—Chained Multiple Attribute—Free

Data Base Organization,” J.M. thang,
S. B. Yao, and K.S. Fu, Purdue Univ.,
West Lafayette, IN.

“The Design of Cryptography—Based Secure

File Systems,” E. Gudes, Penn State Univ.,

College Park, PA.

DISCUSSIONS

Session VI 2:00 p.m.

Round Table Discussions

Chairman: David K. flsiao

Ohio State University

Coltanbus, Ohio

Panelists:

B. Berra, Syracuse University
P. Denning, Purdue University
H. Edelberg, Sperry Research Center

J. Fry, University of Michigan
J. Liu, Univ. of Illinois, Urbana

J. Mehl, IBM Research Lab.

WORKSHOP COt’NITTEE

General Chairman: Professor Stephen S. Yau

Northwestern University

Workshop Co—Chairmen: Professor David K. Hsiso

Ohio State University

Professor Richard Muntz

UCLA

Professor P. Bruce Berra

Syracuse University

Professor Mani Chandy

University of Texas

Professor Peter then

Mass. Inst. of Technology

Dr. Murray Edelberg

Sperry Research Center

Professor James Fray

University of Michigan

Professor R. S. Gaines

The Rand Corporation

Professor H. R. Hartson

Virginia Polytechnic Inst.

& State University

Professor Peter Donning
Purdue University

Dr. Frank King
IBM Research Laboratory

Professor G. Popek
UCLA

Dr. E. J. McCauley, III

Aeronutronic Ford

Treasurer and Local Arrangements: Professor Robert Carlson, Northwestern University

t

PROGRAM COMMITTEE

14

1. THE USE OF REFERENCE MONITOR TECHNIQUE
FOR DATA SECURITY IN COMPUTER SYSTEMS

Michael Grohn and Gillian Kirkby
I.P. Sharp Associates Ltd.

Suite 600

265, Caning Avenue

Ottawa, K1S 2E1 CANADA

Data security in computer systems is recognized by both industry
and the military as a major problem area. A security breach may result in

heavy financial loss or disclosure of national secrets, either of which is

deemed high undesirable. Unfortunately, the haphazard dispersion of security
mechanisms, in current computer technology, makes it impossible to be cer

tain that a system really is secure.

Our approach in addressing this problem chooses the reference

monitor technique, explicitly to centralize all security related functions.

The definition involved a three stage process, progressing from abstrac

tions to realizations.

A mathematical model was constructed to embody the salient fea

tures of secure data management. This led to the ‘Parnas-like’ functional

specification of an adequate DMS design tool. The third step was to uti

lize validation techniques to certify that the functional specifications
maintained security. These specifications are expected to facilitate

actual implementations of a secure DMS.

The relational approach to data management was adopted, because
its simplicity and theoretical basis allowed concentration on security
considerations. The functional specification activity indicated those
attributes required of a host operating system. The net result of our

work is the conclusion that implementation of a provably secure data
management system is possible.

2. CONVEYANCE OF OPERATING AND DATA MANAGEMENT SYSTEMS

William D. Haseman

Carnegie-Mellon University
Pittsburgh, PA 15213

Recent advances in the area of very large data bases and in the

area of non-procedural query languages to access those data bases is

beginning to demonstrate that the structure and functions of a data base

management system and an operating system are rapidly becoming the same.

The objective of this paper is to argue because of those similarities~ the

15

future will see operating systems replaced by data base management systems,
or vice versa depending on how you view the transition.

The approach which will be used to show this convergence will be
the parallel discussion of the GPLAN system and a typical operating system.
The GPLAN system includes a large scale data base management system, an

English like non-procedural query language, and the capability to use a

number of models or application programs stored within its program library.
An effort will be made to show how many of the problems encountered in the

design of this system are very similarto those problems involved in

operating systems, particularly when multiple users are permitted. These

include, to name a few, issues related to allocation of scarce resources,

concerns about deadlock, security and integrity, task scheduling, memory

paging, and control of data transfers.

3. SIMILARITIES AND DIFFERENCES BETWEEN OPERATING SYSTEM AND DATA MANAGEMENT

SECURITY - A STUDY TOWARD A KERNAL DESIGN OF DATABASE SECURITY SOFTWARE

Deborah Downs and Gerald J. Popek
Computer Science Department

UCLA

Los Angeles, CA

Data management security has become an important part of data

base design. To clarify the issues involved in providing this security,
the similarities and differences between operating system and data manage

ment security are examined and several proposed methods of achieving
security in data bases are discussed. The importance of reliable enforce

ment by the data bas.e security software is noted and an outline of a kernel

design is proposed as a possible solution.

4. SYSTEM R AND ITS OPERATING SYSTEM ENVIRONMENT

Michael W. Blasgeri
IBM Research Laboratory

San Jose, CA

The relationship between System R, an experimental data manage
ment system, and its operating system is explored. The problems of lock

ing, recovery, and storage management are discussed, and their implementa
tions described. The need for efficient low level primitives from the

operating system is emphasized.

16

5. PERFORMANCE EVALUATION OF GENERALIZED MANAGEMENT INFORMATION SYSTEM ON A

VIRTUAL MEMORY OPERATING AND COMPUTER SYSTEM - A CASE STUDY OF GMIS ON VM/370

Luis E. S. Sarmento and Peter P. S. Chen

E53—329, Center for Information Systems Research

Sloan School of Management
M.I.T.

Cambridge, MA 02139

Using the virtual machine capability of VM/370, GMIS (Generalized
management Information System) provides an unconventional way to integrate
a database system and several modeling programs. This paper analyzes the

GMIS system architecture and identifies ways to improve the system perform
ance.

Both hardware upgrade and software changes are proposed and

evaluated. To evaluate whether a hardware upgrade is necessary, a set of

measurement experiments are performed on the computer system (an IBM 370/

158) to find out the extent of resources utilization. To evaluate the

software changes (such as improving the interface between the database

system and the O.S.), a simulation model is developed. In the simulation

experiments, some “surprising” results are found and analyzed. Finally,
recommendations on how to improve the system performance are made.

6; AN ANALYSIS OF DISTRIBUTED FREE SPACE IN AN OPERATING AND

DATA MANAGEMENT SYSTEMS ENVIRONMENT

V. H. Chin

Department of Computer Sciences

Northwestern University
Evanston, IL 60201

Due to various application requirements, many generalized data

base management systems (GDBMS) provide not only efficient facilities for

the creation and storage of users’ data, but also provide efficient system
optimization facilities for maintaining and automatically optimizing the

performance of a created data base. Technological developments in storage
devices have led to larger storage capacity, faster access-time, and

cheaper storage cost. Therefore, the conventional response-time criterion

for measuring system performance becomes more important than the space
utilization (i.e., secondary storage space) criterion.

In order to maintain fast response time, many generalized data

base management systems set aside an additional free storage space within

secondary storage. This Data Storage Area (DSA) is allocated for the

storing of data records. By providing this “distributed” free space
within each DSA, subsequent updating operations (e.g., inserting a new

record or increasing the length of an existing record) do not require
overflow techniques; therefore, from the viewpoint of response time

the desired system performance can be maintained. In this paper, the size

17

of “distributed” free-space in a DSA which should be claimed at load

time is represented as a function of two variables,, namely: (1) the

insertion ratio of the file subsequent to the load time, and (2) the number

of records in the data storage area (DSA) at load time. Using these two

variables as known parameters, the size of “distributed” free space can

be determined and reserved, and we can determine the size of the DSA’s.

This is used to determine the number of pages required for a file at load

time. Based on a probability function, a generalized model which represents
the “appropriate” DSA size has been obtained with respect to various Access

Methods available today. Although the motivation of the paper is to

present a general mathematical model, few tests have been done to study
the analytical results.

7. THE INFLUENCE OF THE OPERATING SYSTEM IN THE DESIGN AND

IMPLEMENTATION OF TRIGGER SUBSYSTEM FOR DATABASE SYSTEM

Kapali P. Eswaran

IBM Research Laboratory
San Joe, CA 95193

This paper considers the specifications and design of a trigger
subsystem in a database management system. The use of triggers as extended

assertions, as a means to materialize virtual data objects, and as a

tool in enforcing authorization specifications is discussed. The func

tional requirements of a trigger subsystem and different implementation
issues are studied. We also examine the interactions between a trigger
subsystem and the rest of the database system, in particular the authori

zation and locking subsystems. We also point out that to meet the general
requirements of a database system, two kinds of triggers are needed. A

short discussion on the philosophies of subroutines and triggers in data

base systems is also included.

8. DATABASE REORGANIZATION ISSUES RELATED TO

OPERATING AND DATA MANAGEMENT SYSTEMS INTERFACE

Gary H. Sockut and Robert P. Goldberg
Aiken Computation Laboratory

Harvard University
Cambridge, MA 02138

Reorganizing a data base concurrently with usage is presented as

an alternative to the conventional strategy of keeping a data base offline

during reorganization. Offline reorganization could require an intolerably
long time for a very large data base or for an essential computer utility,
which is to be available 24 hours per day. Examples and purposes of

reorganization are described. During concurrent reorganization, users

have full access (including update) to the entire data base, with only
a brief wait if a portion to be accessed is being reorganized. Thus

locking must be of small granularity, or reorganization must release locks

frequently. Data independence is required; a level of the data base is

invariant while lower levels are reorganized. Requirenientsfor con

18

current reorganization include correct operation, synchronization for
consistency, deadlock prevention or recovery, journalling and recovery,
and efficiency. Several alternatives to full concurrent reorganization
are described. Issues which should be investigated include a conceptual
model, inter-level mappings, algorithms, principles, performance models,
and semantics. Several of the issues that are discussed (synchronization,
deadlocks, process dispatching priorities, journalling, file structure
optimization, and performance models) relate to the interface between

operating and data base management systems.

9. EXTENDING THE CONCEPT OF ABSTRACT DATA TYPES (FOR THE
SYNCHRONIZATION OF CONCURRENT ACCESSES TO SHARED RESOURCES IN

OPERATING SYSTEMS) TO THE REPRESENTATION OF DATABASE
INTEGRITY CONSTRAINTS AND VIEWS

Herbert Weber

IBM Research Laboratory
San Jose, CA 95193

An abstract data type consists of a collection of data and a

set of procedures associated with the type. Only those procedures which

are local to the type have access to the data of the type. A program may

operate on those data through the invocation of the procedures of this

type.

Abstract data types have been introduced to model and implement
the synchronization of accesses to shared resources in Operating Systems.
One frequently used notation of an abstract data type for this purpose is

called the monitor concept. A monitor provides the primitive operations
~‘wait~’and “signal” which share a variable denoting the characteristics
of a resource in a computer system. With these operations one may delay or

resume programs in order to organize a conflict free use of the resource.

One may also consider data items in a data base as shared among
various concurrent transactions against the data base. The monitor con

cept may then serve as a means to organize a conflict free interrogation
and manipulation of the data base.

The incapsulation of the data in the data base by all the opera
tions applicable to them is beneficial for other purposes as well:

(1) The creation of a data base requires the definition of data

structures, integrity assertions, and different user views. Current data

base concepts provide therefore three basically different notations to

describe the content of the data base. It is shown here to be possible
that an extended abstract data type concept may serve as a uniform notation.

(2) The definition of data structures, integrity constraints,
and views usually results in a very complex structure of the data base.
The structure of programs which interrograte and manipulate a complex
data base are then complex themselves, and therefore difficult to

design, implement, and maintain. The abstract data type concept offers

means for a structured and modular design and helps therefore to

simplify these tasks.

19

For this purpose we allow the definition of abstract data types
which characterize data entities and logical dependencies among data

entities as well. In order to model arbitrary logical dependencies we

propose the following extension of the concept: Abstract data types may be

represented in terms of other more primitive abstract data types. The

resulting hierarchical composition schema for abstract data types will

be called D-graph.

We show how one may represent data structures, integrity con

straints and views by means of D-graphs. We demonstrate also how users

may manipulate the data base via various user views and provide therefore

a schema for the proper communication of different users by means of

data shared among different views.

10. THE REQUIREMENT FOR A SECURE USER INTERFACE
TO DATABASE AND OPERATING SYSTEMS

Stanley R. Ames, Jr.

The MITRE Corporation
Bedford, MA

The requirements for multilevel security have a great impact on

the formulation of a user interface, especially in a transaction-oriented

data base management system. In this report, we discuss several tradeoffs

between the requirements for multilevel security and the requirements for

a facile user interface.

We have reached several conclusions that impact the require
ments for a usably secure user interface. Among these are the realization

that: object size determines the types of features that can easily be

supported; a limited type of write down may well be needed to ensure user

acceptance; and unless process control is handled by hardware, the security
requirements for multiple processes may impact performance to an unaccept
able degree. Among the problems that require additional effort are: the

best way to securely input commands and identifications of tradeoffs

between verifying a portion of code and improved user interfaces.

The first implementation of the message systems will be completed
in January. These systems will include secure behavior at the user

interface. In addition, each system will provide a detailed design for

implementing the system in a verifiably secure fashion. This design will

be implemented by July of 77, giving us a conceptually secure system. With

these operational systems, we will be in a better position to answer

questions regarding the impact security has on the user interface.

11. A DEADLOCK MODEL FOR DATA BASE AND OPERATING SYSTEMS

S. B. Yao

Math Science Building
Purdue University

West Lafayette, IN 47907

20

The problem of locks and deadlocks in database systems are

reviewed and compared. A probabilistic model for deadlocks in database

and operating systems is presented and a database deadlock detection

algorithm is introduced.

12. RESOLVING SOME CONCURRENT UPDATE PROBLEMS WITHOUT LOCKING

Philip Bernstein, C. H. Papadimitriou, J. B. Rothnie

Aiken Computation Laboratory
Harvard University
Cambridge, MA 02138

When many users retrieve from and update a single data base, their

interleaved transactions may result in states of the database that are not

reachable by any ordinary (i.e., serial) sequence of transactions. The

usual approach to this problem has been to embody a locking mechanism in

the database system to prevent arbitrary interleaving of transactions on

those database items that are being updated. Unfortunately, lock

ing operations can be quite time consuming and may force some processes
to idle for significant time periods until it is safe for them to proceed
with their transactions. However, not all update transactions require lock

ing the database items upon which they operate. In this paper we propose
a mathematical model for analyzing what kinds of transactions can dispense
with locking.

We assume that the set of transactions I = {T1,...,T~} are defined

statically as follows: Each transaction I.~ consists of a read operation ~
which (instantaneously) extracts some information from the database into

a local work area, followed later by a write operation W.~, which (instantane
ously) inserts, deletes and/or modifies some database items. The subset of

the database that R~ reads, denoted S(R~), and that W.j writes, denoted S(W~)~
are also known. (The granularity of the subset is not important for the

results that follow.) Since the exact nature of the computation performed
by I~j is not easy to determine a priori, we assume that T~ is a set of

functions, each mapping the set of possible values of elements of S(R~)
to the set of possible values of a particular element of S(W1), and open

to arbitrary interpretations (in the program schema theoretic sense).

A history H of a set of transactions I is a permutation of the

symbols R~ and W,~ in which each R~ precedes the corresponding Wj. A serial

history i~ one in which each R~ immediately precedes the corresponding W,j.
Intuitively, two histories are ~jya1~~ if for any given initial state of

the database, the two map the database into the same final state, independ
ent of the exact nature of the computation performed by each transaction.

Depending upon the structure of the sets S(R~) and S(W~)~ there

are histories that are not equivalent to any serial history. An example is

H = <R1,R2,W2,W1> where S(W1) = S(R2) = {X} and S(W2) = S(R1) = {Y}. In

this case, we say that H is not serially reproducible We only
want to allow consistent database states - ones that result from serially
reproducible histories. A set of transactions T is safe if all histories

21

of I are serially reproducible. A history of a safe set of transactions

always yields a consistent database state, without synchronizing reads and
writes. We now informally outline some preliminary results regarding this

model.

A transaction T.~ = R~,W.] is live in history H if at least one

value of S(Wi) is read by another transaction before it is overwritten.

Theorem 1 Two histories are equivalent if they contain the same set of

transactions and each live read, R~, reads each element of S(R~) from the

same write operations in both histories. o

We say that a digraph G = (T,E) with node set I = {T1,...,T } is compatible
with a history H iff

For all Ti, 12 for which R2 reads some x from S(W1) in H we have
i. (11,12) C E

ii. For all 13 ~ T such that x C S(W3), exactly one of (T3,T1),
(T2,T3) is in E.

Theorem 2 A history H is serially reproducible 1ff there is an acyclic
digraph G compatible with H. o

However, the necessary and sufficient condition of Theorem 2 does

not seem to suggest an efficient test for serial reproducibility:
Theorem 3 Determining whether a given history H is serially reproducible
is NP-complete (i.e., probably requires exponential time). o

For a set of transactions T, define a graph G(T) = (V,E) as V

{R~,W~:al1 j} and E = {(R~,W~):al1 j} U {(R~,W,j): S(R1) fl S(Wj) t ø} U

{(Wj,W~): S(W~) n S(Wj) ~ ø}.

Theorem 4 Let I be a set of transactions such that for each T.j C T, S(W~)
has an element not present in any other S(W1), Ij C 1. Then 1 is not safe

1ff G(T) has a cycle. Furthermore, the presence of a cycle in G(T) can be

determined in linear time. o

Theorem 4 provides a method for determining safety of a certain class of

transaction sets. Interesting practical examples of these transaction sets

have been isolated. We conjecture that the general problem of determining
safety is not computationally feasible.

13. USER, OPERATING SYSTEM, DATABASE MANAGEMENT SYSTEM:

GLOBAL STRUCTURE AND FUNCTIONAL DEPENDENCIES

Ken J. McDonell

Department of Computing Science

University of Alberta

Edmonton, Alberta T6G 2H1 Canada

The hardware architecture of secondary storage subsystems is

rapidly changing. Technological advancements have heralded the introduction

of input-output processors with significant autonomous processing potential,
and the requirements of non-numeric processing are being recognized with

the development of specially tailored storage modules and access techniques.
These hardware changes within the input-output subsystem will seriously
impact both the internal structure and the external interfaces of the

database management system.

22

Assuming these preconditions, a justification will be presented
for replacing the current multiple input-output interfaces between the

secondary storage devices and the software modules (i.e. user processes,
service utilities and operating system routines) with a homogeneous inter

face to the database management system. In fact, the enforcement of a single,
high level input-output interface to secondary storage for all central-

processor-resident software appears to result in significant advantages —-

specifically in the areas of software size, reliability and maintainability,
system structure, security and integrity, and efficient resource utilization.

14. INTELLIGENT COUPLING OF THE

USER TO DISTRIBUTED DATABASE SYSTEMS

Shi-Kuo Chang and B. H. McCormick

Medical Information Systems Laboratory
University of Illinois at Chicago Circle

Chicago, IL

Recent advances in communication technology have made the design
of sophisticated computer networks feasible. One of the main advantages
of a computer network is the sharing and exchange of information and

resources among a large number of users. Instead of a centralized data

base, with computer networking distributed database systems have become a

reality.

However, the complexity of a distributed database system makes

it difficult for the casual end user to effectively interact with the

system. He will have difficulty in locating information, formulate queries,
and obtain access permission. In this paper, the concept of an intelligent
coupler is introduced. The intelligent coupler serves as the intermediary
between the end user and the distributed database system. The intelligent
coupler listens to the user’s retrieval requests; helps the user formulate

his retrieval requests correctly; efficiently translates user’s retrieval

requests into a network-compatible retrieval command language; and obtains

authorization from the system for data retrieval and/or update. In short,
the intelligent coupler serves as the user’s surrogate in a distributed

database system. However from the user’s viewpoint, the intelligent coupler
also serves as the system’s surrogate.

THE RELATIONSHIP BETWEEN OPERATING SYSTEM
AND DATABASE SECURITY: A SURVEY

E. B. Fernandez and C. Wood

IBM Corp., Los Angeles Scientific Center

9045 Lincoln Blvd.

Los Angeles, CA 90045

This paper discusses some policies that have been used or proposed
for data security in operating and database management systems. Some

mechanisms to implement these policies are discussed also. A survey of

systems and the approaches to interrelate OS & DBMS is given.

23

TC ON DATA BASE ENGINEERING

MEMBERSHIP LIST

Russell J. Abbott

Department of Computer Science

California State University
Northridge, CA 91324

Larry V. Allen

MD. C-73

Honeywell Information Systems
P. 0. Box 6000

Phoenix, AZ 85005

D. Au

PCS, Inc.

467 Hill 23 Drive

Flint, MI 48504

Charles Bachman

Honeywell Information Systems
200 Smith Street

Waltham, MA 02154

D. Z. Badal

UCLA

Computer Science Department
3436 Boelter Hall

Los Angeles, CA 90024

M. V. Bhat

Engineering Computing
Pratt & Whitney Aircraft

of Canada

P. 0. Box 10

Longueuil, Quebec, CANADA

Robert Carlson

Computer Sciences Department
Northwestern University
Evanston, IL 60201

Cheng-Wen Cheng
Room 4L-409

Bell Laboratories

Warrenville Road

Naperville, IL 60540

L. Cheung
Marquette University
1515 W. Wisconsin Avenue

Milwaukee, WI 53233

V. H. Chin

Institute of Applied Mathematics

National Tsing-Hua University
1-Isinchu, Taiwan

REPUBLIC OF CHINA

3. L. Baer

Department of Computer Science

FR - 35

University of Washington
Seattle, WA 98195

Yaohan Chu

Department of

University of

College Park,

Computer Science

Maryland
MD 20742

A. James Baroody, Jr.

713 Eugenia Avenue

Madison, WI 53705

John L. Berg
National Bureau of Standards

TECH A-265

Washington, DC 20234

P. Bruce Berra

Industrial Engineering and

Operations Research

Syracuse University
441 Link Hall

Syracuse, NY 13210

Henry Y. H. Chuang
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

Billy G. Claybrook
Computer Science Department
VPT and State University
Blacksburg, VA 24061

E. F. Codd

IBM Research Laboratory
Monterey and Cottle Roads

San Jose, CA 95193

24

John Czelen

3550~Whitehaven Parkway, N.W.

Washington, DC 20007

Lorraine Duvall

lIT Research Institute

Box 1355, Branch P. 0.

Rome, NY 13440

Murray Edelberg
Sperry Research Center

100 North Road

Sudbury, MA 01776

S. P. Ghosh

IBM Research

Monterey and

San Jose, CA

E. Howard Green Jr.

28 Southview Terrace
San Anseinjo, CA 94960

J. M. Grochow

do A.M.S.

1515 Wilson Blvd.

Arlington, VA 22209

Ronald L. Enfield

1727 South Charlotte Avenue

San Gabriel, CA 91776

D. Ferrari

CS Division, EECS Department
University of California

Berkeley, CA 94720

Edward Feustel

Rice University
P. 0. Box 1892

Houston, TX 77001

Kevin Gross

200 Washington Street

Troy, NY 12180

Michael Hammer

Dept. of Electrical

M.I.T.

Cambridge, MA 02139

Martin Heilman

Dept. of Electrical

Stanford University
Stanford, CA 94305

Engineering

Engineering

N. Frame

First Data Corporation
2011 Eye Street N.W.

Washinton, DC 20008

K. S. Fu

School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

R. Stockton Gaines

Information Science Department
The Rand Corporation
1700 Main Street

Santa Monica, CA 90406

Edward N. Gawlinski

Environmental Protection Agency
26 Federal Plaza, Room 1642

New York, NY 10007

Gene F. Hoffnagle
6900 Keats Court

Rockville, MD 20855

William L. Honig
Bell Labs, Room 6B327

Naperville & Warrenville Roads

Naperville, IL 60540

Grace M. Hopper
Dept. of the Navy, NPLS, OP-9llF

Pentagon BD 770

Washington, DC 20350

K. Hsiao

of Computer and Information

The Ohio State University
2036 Neil Avenue Mall

Columbus, OH 43210

Laboratory
Cottle Roads

95193

Roger W. Elliott Leo H. Groner

Dept. of Industrial Engineering B/330-75 D/78F
Texas A & M University IBM E. Fishkill

College Station, TX 77843 Hopewell Jct., NY 12533

David

Dept.
Science

25

Larry C. Hull

Code 533.1

Goddard Space Flight Center

Greenbelt, MD 20771

Keki Irani

Dept. of Computer and

Electrical Engineering
University of Michigan
Ann Arbor, MI 48104

David K. Jefferson

David W. Taylor Naval Ship
R & D Center

Code l88A

Bethesda, MD 20084

Douglas S. Kerr

Dept. of Computer and Information

Science

The Ohio State University
2036 Neil Avenue Mall

Columbus, OH 43210

Richard B. Kieburtz

Dept. of Computer Science

State University of New York

Stony Brook, NY 11794

T. L. Kunii

Information Sciences Laboratories

University of Tokyo
Tokyo, 113, JAPAN

Yutaka Kuwahara

Hitachi Central Research Lab

2672 Bayshore Frontage Road ~7O3

Mountain View, CA 94043

Larry Kuzma

HQ. AFSC SMR 6

Andrews AFB, MD 20334

Edward V. S. Lee

Jet Propulsion Laboratory
MS—168-534

4800 Oak Grove Drive

Pasadena, CA 91103

Ester K. C. Lee

Jet Propulsion Laboratory
171—266

4800 Oak Grove Drive

Pasadena, CA 91103

David Lefkowitz
The Moore School of

Electrical Engineering
The University of Pennsylvania
Philadelphia, PA 19104

Philippe G. H. Lehot

Philippe LEHOT Associates
976 Longridge Road

Oakland, CA 97610

Edward Levinson

Room 2A2l4

Bell Laboratories

Whippany Road

Whippany, NJ 07981

Richard C. Luebke

1841 St. Andrews Plaza

San Jose, CA 95132

Jane W. S. Liu

Department of Computer Science

University of Illinois

Urbana, IL 61801

Vincent Lum

IBM Research Laboratory
Monterey and Cottle Roads

San Jose, CA 95193

Stuart E. Madnick

Sloan School of Management
M.I.T.

Cambridge, MA 02139

Frank Manola

Communications

Navel Research

Washington, DC

Giacomo Marini

IBM Scientific Center

Dorsoduro 3228

30123 Venezia, ITALY

E. J. McCauley
Aeronutronic Ford Corp. ,

X40

393 Fabian Way
Palo Alto, CA 94303

John K. McCandliss

12164 Wensley Road

Florissant, MO 63033

Sciences Division

Laboratory
20375

26

Jim Mehi

P. 0. Box 632

Los Gatos, CA 95030

J. Misra

Computer Science Department
University of Texas

Austin, TX 78712

L. I. Morganstein
E. I. Dupont Company
Engineering Department
Louviers Building
Wilmington, DE 19898

Peter A. Ng
Computer Science Program
Department of Mathematics

Hunte College of CUNY

695 Park Avenue

New York, NY 10021

Sylvia Osborn

Department of Computer Science

University of Waterloo

Waterloo, Ontario

CANADA N2L 3Gl

David Pessel

Electrical

University
Rochester,

Charles T. Pierce

Attn: DRSEL-PA-S

Product Assurance Dir.

Ft. Monmouth, NY 07703

Noah Prywes
122 Moore 02

University of Pennsylvania
Philadelphia, PA 19174

B. H. Sams

RCA Laboratories

Princeton, NY 08540

N. F. Schneidewind

Code 5555

Naval Postgraduate School

Monterey, CA 93940

Harold Schwenk

BGS Systems, Inc.

P. 0. Box 128

Lincoln, MA 01773

Michael E. Senko

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

Gerard P. Shabe

C/o CCTC/WAD
11440 Isacc Newton Square
Reston, VA 22090

Michael D. Shealy
1924 Woodmont Drive

Richmond, VA 23235

Martin L. Shooman

Polytechnic Institute of

New York

Long Island Center

Route 110

Farmingdale, NY 11735

A. Shoshani

System Development Corporation
2500 Colorado Avenue

Santa Monica, CA 90406

Diane C. P. Smith

Computer Science Department
University of Utah

Salt Lake City, UT 84112

Norman Sondak

Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609

Donald H. Springer
1482 Platt Avenue

Milpitas, CA 95035

Michael Stonebraker

EECS Department
549 Evans Hall

University of California

Berkeley, CA 94720

Engineering Dept.
of Rochester

NY 14627

27

1. C. Ting
School of Information and

Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

M. Tsuchiya
Dept. of Electrical Engineering
University of Hawaii at Manoa

2540 Dole Street

Honolulu, HI 96822

Anthony I. Wasserman

26 Malta Drive

San Francisco, CA 94131

Leonard H. Weiner

Computer Science Department
Michigan State University
400 Computer Center

East Lansing, MI 48824

Geo Wiederhold

155 Marine Road

Woodside, CA 94062

August Martin Wildberger
15811 Pinecroft Lane

Bowie, MD 20716

Paul A. Willis

TELEDYNE GEOTECH

314 Montgomery Street

p. 0. Box 334

Alexandria, VA 22319

Eugene Wong
Dept of Electrical Engineering

and Computer Science

University of California

Berkeley, CA 94720

S. B. Yao

Department of Computer Science

Purdue University
West Lafayette, IN 47909

Stephen S. Yau

Computer Science Department
Northwestern University
Evanston, IL 60201

Raymond T. Yeh

Computer Science Department
Painter 3.26

University of Texas at Austin

Austin, TX 78712

A. W. Yonda

12 Sunset Drive

Medway, MA 02053

Carlo A. Zaniolo

Sperry Research Center

100 North Road

Sudbury, MA 01776

28

EDITOR’S NOTES: This is the first issue of Data Base Engineering Bulletin,
a quarterly publication of the IEEE Computer Society Technical Committee on

Data Base Engineering. We hope that the Bulletin will serve as an effective
communication channel for the expedient dissemination of news and techni

cal ideas in the area of Data Base Engineering. I seek your advice on all

editorial aspects of the Bulletin. Your contributions, suggestions, and

criticisms will be greatly appreciated.

-- Jane W. S. Liu

• . • .

MEETINGS OF INTEREST

• Third Workshop On Computer Architecture For Non-Numeric Processing
May 17—18, 1977

Syracuse, New York

Sponsors: ACM SIGIR, SIGARCH, and SIGMOD

Conference Chairman: P. Bruce Berra

Syracuse University
441 Link Hall

Syracuse, NY 13210

(315) 423-2826

Program Chairman: Stewart A. Schuster

University of Toronto

Toronto, Ontario, CANADA

(416) 978-6026

Local Arrangement: N. J. Fairbanks

lilA Link Hall

Syracuse University
Syracuse, NY 13210

(315) 423-3511

• Third International Conference On Very Large Data Bases

October 6-8, 1977

Tokyo, Japan

Papers due: April 15, 1977

Send 5 copies to: Alan Merten

Graduate School of Business

Administration

University of Michigan
Ann Arbor, MI 48109

Requests for information

regarding travel support: Stuart Madnick

M.I.T. Sloan School of Management
50 Memorial Drive

Cambridge, MA 02139

	40979_DataEngineering_March_1977_ Vol 1_ No 1.pdf

