
CCSE Draft 3.1 – 2/6/04

Computing Curriculum -

Software Engineering

--- Public Draft 3.1 ---
(February 6, 2004)

This is a draft document distributed for purposes of review by the public
(those interested in the education of software engineers). At this point,
the document is not complete or authoritative; it is subject to revision;
and it does not necessarily represent the contents of the final document.

The Joint Task Force on Computing Curricula
IEEE Computer Society

Association for Computing Machinery

This material is based upon work supported by the
National Science Foundation under Grant No. 0003263

CCSE Public Draft 3.1 – 2/6/04 2

Preface

This document was developed through an effort originally commissioned by the ACM Education
Board and the IEEE-Computer Society Educational Activities Board to create curriculum
recommendations in several computing disciplines: computer science, computer engineering,
software engineering and information systems. Other professional societies have joined in a
number of the individual projects. Such has notably been the case for the CCSE (Computing
Curricula – Software Engineering) project, which has included participation by representatives
from the Australian Computer Society, the British Computer Society, and the Information
Processing Society of Japan.

Development Process

The CCSE project has been driven by a Steering Committee appointed by the sponsoring
societies. The development process began with the appointment of the Steering Committee co-
chairs and a number of the other participants in the fall of 2001. More committee members,
including representatives from the other societies were added in the first half of 2002. The
following are the members of the CCSE Steering Committee:
Co-Chairs

Rich LeBlanc, ACM, Georgia Institute of Technology, U.S.
Ann Sobel, IEEE-CS, Miami University, U.S.

Knowledge Area Chair
 Ann Sobel, Miami University, U.S.
Pedagogy Focus Group Co-Chairs

Mordechai Ben-Menachem, Ben-Gurion University, Israel
Timothy C. Lethbridge, University of Ottawa, Canada

Co-Editors
Jorge L. Díaz-Herrera, Rochester Institute of Technology, U.S.
Thomas B. Hilburn, Embry-Riddle Aeronautical University, U.S.

Organizational Representatives
ACM: Andrew McGettrick, University of Strathclyde, U.K.
ACM SIGSOFT: Joanne M. Atlee, University of Waterloo, Canada
ACM Two-Year College Education: Elizabeth K. Hawthorne, Union County College,
U.S.
Australian Computer Society: John Leaney, University of Technology Sydney, Australia
British Computer Society: David Budgen, Keele University, U.K.
Information Processing Society of Japan: Yoshihiro Matsumoto, Musashi Institute of

Technology, Japan
IEEE-CS Technical Committee on Software Engineering: J. Barrie Thompson,

University of Sunderland, U.K.

CCSE Public Draft 3.1 – 2/6/04 3

Acknowledgements

The National Science Foundation, the Association of Computing Machinery, and the IEEE
Computer Society have supported the development of this document.

Since its inception, many individuals have contributed to the CCSE project, some in more than
one capacity. This work could not have been completed without the dedication and expertise of
these volunteers. Appendix C lists the names of those that have participated in the various
development and review stages of this document. Special thanks go to Susan Mengel of Texas
Tech University who served as an original co-chair of the Steering Committee and performed the
initial organizational tasks for the CCSE project.

CCSE Public Draft 3.1 – 2/6/04 4

Table of Contents

Preface ..2
Acknowledgements...3

Chapter 1: Introduction ..6

1.1 Purpose of this Volume...6
1.2 Where we fit in the Computing Curriculum picture ...6
1.3 Computer Science Volume..7
1.4 Development Process of the CCSE Volume ...7
1.5 Structure of the Volume ..9

Chapter 2: Guiding Principles ..10

2.1 CCSE Principles..10
2.2 Student Outcomes ...12

Chapter 3: The Software Engineering Discipline ..14

3.1 The Discipline of Software Engineering...14
3.2 Software Engineering as an Engineering Discipline...15
3.3 Professional Practice ...17
3.4 Prior Software Engineering Education and Computing Curriculum Efforts19
3.5 SWEBOK and other BOK Efforts ..19

Chapter 4: Overview of Software Engineering Education Knowledge21

4.1 Process of Determining the SEEK ..21
4.2 Knowledge Areas, Units, and Topics..21
4.3 Core Material ..22
4.4 Unit of Time ..22
4.5 Relationship of the SEEK to the Curriculum..23
4.6 Selection of Knowledge Areas..23
4.7 SE Education Knowledge Areas ...24
4.8 Computing Essentials..25
4.9 Mathematical and Engineering Fundamentals ..27
4.10 Professional Practice..28
4.11 Software Modeling and Analysis...29
4.12 Software Design...31
4.13 Software Verification and Validation ..32
4.14 Software Evolution ..33
4.15 Software Process..34
4.16 Software Quality ..35
4.17 Software Management ...36
4.18 Systems and Application Specialties ...37

Chapter 5: Guidelines for SE Curriculum Design and Delivery..40

5.1 Guideline Regarding those Developing and Teaching the Curriculum40
5.2 Guidelines for Constructing the Curriculum...41
5.3 Attributes and Attitudes that should Pervade the Curriculum and its Delivery..........43

CCSE Public Draft 3.1 – 2/6/04 5

5.4 General Strategies for Software Engineering Pedagogy...48
5.5 Concluding Comment ...49

Chapter 6: Courses and Course Sequences ..51

6.1 Course Coding Scheme ...52
6.2 Introductory Sequences Covering Software Engineering, Computer Science and
Mathematics Material ...53
6.3 Core Software Engineering Sequences ...58
6.4 Completing the Curriculum: Additional Courses ...62
6.5 Curriculum Patterns ..64

Chapter 7: Adaptation to Alternative Environments..70

7.1 Alternative Teaching Environments ...70
7.2 Curricula for Alternative Institutional Environments ...72
7.3 Programs for Associate-Degree Granting Institutions in the United States and
Community Colleges in Canada ...74

Chapter 8: Program Implementation and Assessment ...76

8.1 Curriculum Resources and Infrastructure ...76
8.2 Assessment and Accreditation Issues..77
8.3 SE in Other Computing-Related Disciplines ..78

Bibliography for Software Engineering Education ...79

Appendix A: Detailed Descriptions of Proposed Courses...87

Appendix B: Contributors and Reviewers ...127

CCSE Public Draft 3.1 – 2/6/04 6

Chapter 1: Introduction

1.1 Purpose of this Volume

The primary purpose of this volume is to provide guidance to academic institutions and
accreditation agencies about what should constitute an undergraduate software engineering
education. These recommendations have been developed by a broad, internationally based group
of volunteer participants. This group has taken into account much work that has been done in
software engineering education over the last quarter of a century. Software engineering
curriculum recommendations are of particular relevance, since there is currently a surge in the
creation of software engineering degree programs and accreditation processes for such programs
have been established in a number of countries.

The recommendations included in this volume are based on a high-level set of characteristics of
software engineering graduates presented in Chapter 2. Flowing from these outcomes are the two
main contributions of this document:
• SEEK: Software Engineering Education Knowledge - what every SE graduate must know

• Curriculum: ways that this knowledge and the skills fundamental to software engineering can
be taught in various contexts

1.2 Where we fit in the Computing Curriculum picture

In 1998, the Association for Computing Machinery (ACM) and the Computer Society of the
Institute for Electrical and Electronic Engineers (IEEE-CS) convened a joint-curriculum task
force called Computing Curricula 2001, or CC2001 for short. In its original charge, the CC2001
Task Force was asked to develop a set of curricular guidelines that would “match the latest
developments of computing technologies in the past decade and endure through the next
decade.” This task force came to recognize early in the process that they—as a group primarily
composed of computer scientists—were ill-equipped to produce guidelines that would cover
computing technologies in their entirety. Over the past fifty years, computing has become an
extremely broad designation that extends well beyond the boundaries of computer science to
encompass such independent disciplines as computer engineering, software engineering,
information systems, and many others. Given the breadth of that domain, the curriculum task
force concluded that no group representing a single specialty could hope to do justice to
computing as a whole. At the same time, feedback they received on their initial draft made it
clear that the computing education community strongly favored a report that did take into
account the breadth of the discipline.

Their solution to this challenge was to continue their work on the development of a volume of
computer science curriculum recommendations, published in 2001 as the CC2001 Computer
Science volume (CCCS volume)[ACM 2001]. In addition, they recommended to their sponsoring
organizations that the project be broadened to include volumes of recommendations for the
related disciplines listed above, as well as any others that might be deemed appropriate by the
computing education community. This volume represents the work of the CCSE (Computing

CCSE Public Draft 3.1 – 2/6/04 7

Curricula – Software Engineering) project and is the first such effort by the ACM and the IEEE-
CS to develop curriculum guidelines for software engineering.

In late 2002, IS 2002 - Model Curriculum and Guidelines for Undergraduate Degree Programs
in Information Systems was approved and published, having been created by a task force
chartered by the ACM, the Association for Information Systems (AIS), and the Association of
Information Technology Professionals (AITP). Additional efforts are ongoing to produce
recommended curricula for computer engineering, and information technology.

1.3 Computer Science Volume

Because computer science provides many of the scientific underpinnings of software
engineering, the computer science volume plays a special role in relation to this software
engineering volume. In Chapter 4, the SEEK includes specific reference to core topics described
in the CCCS volume. Additionally, among the curriculum structure alternatives presented in
Chapter 6 are some that include use of particular courses described in the computer science
volume, which are described in detail in appendix a.

1.4 Development Process of the CCSE Volume

The construction of this volume has centered around three major efforts that have engaged a
large number of volunteers, as well as all of the members of the Steering Committee. The first of
these efforts was the development of a set of desired curriculum outcomes and a statement of
what every SE graduate should know. The second effort involved the determination and
specification of the knowledge to be included in an undergraduate software engineering
program, the SEEK. The third effort was the construction of a set of curriculum
recommendations, describing how a software engineering curriculum, incorporating the SEEK,
could be structured in various contexts.

1.4.1 Education Knowledge Area Group

Work began on the volume in earnest in the spring of 2002 with the assignment of Education
Knowledge Area volunteers to develop an initial body of Software Engineering Education
Knowledge (SEEK). The volunteers were given an initial set of education knowledge areas, each
with a short description, and were charged to define the units and topics for each knowledge area
using the templates developed by the Steering Committee. In addition, the results of activities
undertaken at an open workshop held at CSEE&T 2002 (Conference on Software Engineering
Education and Training) [Thompson 2002], and of discussions about required curriculum
knowledge content, held at the Summit on Software Engineering Education in conjunction with
ICSE 2002 (International Conference of Software Engineering) [Thompson 2004], both provided
input to the SEEK developers. The initial work of the volunteers was incorporated in a
preliminary draft of the SEEK, which was the working document used in an NSF sponsored
workshop on the SEEK, held in June 2002. This workshop brought together Education
Knowledge Area group members, Steering Committee members, leaders in software engineering
education, and selected Pedagogy Focus group members to work on the preliminary draft.

The artifacts from the workshop were subsequently refined by the Steering Committee. A
selected review of the resulting SEEK document was performed by a set of internationally
recognized software engineering experts. Their evaluations/comments where used by the

CCSE Public Draft 3.1 – 2/6/04 8

Steering Committee to produce the first official draft version of the SEEK, which was released
for public review in August 2002.

When the first review window terminated in early October 2002, the Steering Committee had
received approximately forty reviews. Each evaluation was coupled with a written response from
the Steering Committee including committee action and justification. After posting the second
version of the SEEK in December 2002, another round of reviews were solicited until the
beginning of March 2003. The WGSEET (Working Group on Software Engineering Education
and Training) were instrumental in sharpening the contents of the second version of the SEEK to
best match the Pedagogy Focus group’s curriculum guidelines. The Working Group’s
contributions along with the second set of evaluations has evolved the SEEK to its final version.

1.4.2 Pedagogy Focus Area Group

In October 2002, the Pedagogy Focus group began work on producing the curriculum
recommendations using the SEEK as a foundation. A Pedagogy Focus group process and work
plan was formed. Group members began work on defining the pedagogy guidelines, curriculum
models, international adaptation, and implementation environments. This information was
subsequently refined by the Steering Committee during February 2003. Reviews of this draft of
the Pedagogy Chapter occurred during a meeting of the WGSEET and at a workshop held at the
2003 Conference on Software Engineering Education & Training in March.

The preliminary draft of the Pedagogy Chapter contained the following sections:
• Principles of Software Engineering Curriculum Design and Delivery
• Proposed Curricula which includes curriculum models and sample courses outlining what

topics of the SEEK a particular course includes.
• International adaptation
• Classes of Skills and Problems that students should master, in addition to learning the

knowledge in the SEEK
• Adaptation to alternative educational environments; e.g. two-year colleges

The curriculum models presented were developed using the SEEK, the Computer Science
Volume (CCCS), and a survey of existing bachelors degree programs. A total of 32 programs
from North America, Europe and Australia were identified and characterized to aid in this work.
A key technique to developing the models rested on identifying which SEEK topics would be
covered by reusing existing CCCS courses. The remaining SEEK material was distributed into
software engineering courses, using the existing programs as a guide.

1.4.3 Full Volume Development

In the spring and summer of 2003 additional material (introduction, guidelines and outcomes,
software engineering background, etc.) was included with the SEEK and the curriculum
components to construct a full draft of the CCSE volume. The first review of the draft CCSE
volume was carried out at the Second Summit on Software Engineering Education held at ICSE
2003 [Thompson 2003]. The Steering Committee used input from the Summit and other informal
review to produce the first “public” draft of the full CCSE volume, which was submitted for
public review from July 2003 to September of 2003. Also, the draft was reviewed and
commented on by the ACM Education Board and the IEEE-CS Educational Activities Board.

CCSE Public Draft 3.1 – 2/6/04 9

Reviewer comments and further work by the Steering Committee resulted in the current draft of
the CCSE volume.

1.5 Structure of the Volume

Chapter 2 presents the guiding principles behind the development of this document. These
principles were adapted from those originally articulated by the CC2001 Task Force as they
began work on what became the CCCS volume. Chapter 3 discusses the nature of software
engineering as a discipline, describes some of the history of software engineering education, and
explains how these elements have influenced the recommendations in this document. Chapter 4
provides the description of what every SE graduate should know. It presents the body of
Software Engineering Education Knowledge (the SEEK) that underlies the curriculum guidelines
and designs presented in Chapters 5 and 6, respectively. Chapter 7 discusses adaptation of the
curriculum recommendation in Chapter 6 to alternative environments. Finally, Chapter 8
addresses various curriculum implementation challenges and also considers assessment
approaches.

CCSE Public Draft 3.1 – 2/6/04 10

Chapter 2: Guiding Principles
This chapter describes the foundational ideas and beliefs that guided the development of the
CCSE materials: the guiding principles for the entire CCSE effort, and the desired student
outcomes for an undergraduate curriculum in software engineering.

2.1 CCSE Principles

The following list of principles was strongly influenced by the principles set down in the CCCS
volume; in some cases they represent minor rewording of those principles. In other cases, we
have tried to capture the special nature of software engineering that differentiates it from other
computing disciplines.

[1] Computing is a broad field that extends well beyond the boundaries of any one computing

discipline. CCSE concentrates on the knowledge and pedagogy associated with a software
engineering curriculum. Where appropriate, it will share or overlap with material contained
in other Computing Curriculum reports and it will offer guidance on its incorporation into
other disciplines.

[2] Software Engineering draws its foundations from a wide variety of disciplines.
Undergraduate study of software engineering relies on many areas in computer science for
its theoretical and conceptual foundations, but it also requires students to utilize concepts
from a variety of other fields, such as mathematics, engineering, and project management,
and one or more application domains. All software engineering students must learn to
integrate theory and practice, to recognize the importance of abstraction and modeling, to be
able to acquire special domain knowledge beyond the computing discipline for the purposes
of supporting software development in specific domains of application, and to appreciate the
value of good engineering design.

[3] The rapid evolution and the professional nature of software engineering require an ongoing
review of the corresponding curriculum. The professional associations in this discipline
must establish an ongoing review process that allows individual components of the
curriculum recommendations to be updated on a recurring basis. Also, because of the special
professional responsibilities of software engineers to the public, it is important that the
curriculum guidance support and promote effective external assessment and accreditation of
software engineering programs.

[4] Development of a software engineering curriculum must be sensitive to changes in
technologies, practices, and applications, new developments in pedagogy, and the
importance of lifelong learning. In a field that evolves as rapidly as software engineering,
educational institutions must adopt explicit strategies for responding to change. Institutions,
for example, must recognize the importance of remaining abreast of well-established
progress in both technology and pedagogy, subject to the constraints of available resources.
Software engineering education, moreover, must seek to prepare students for lifelong
learning that will enable them to move beyond today's technology to meet the challenges of
the future.

[5] CCSE must go beyond knowledge elements to offer significant guidance in terms of
individual curriculum components. The CCSE curriculum models should assemble the

CCSE Public Draft 3.1 – 2/6/04 11

knowledge elements into reasonable, easily implemented learning units. Articulating a set of
well-defined curriculum models will make it easier for institutions to share pedagogical
strategies and tools. It will also provide a framework for publishers who provide the
textbooks and other materials.

[6] CCSE must support the identification of the fundamental skills and knowledge that all

software engineering graduates must possess. Where appropriate, CCSE must help define
the common themes of the software engineering discipline and ensure that all undergraduate
program recommendations include this material.

[7] Guidance on software engineering curricula must be based on an appropriate definition of
software engineering knowledge. The description of this knowledge should be concise,
appropriate for undergraduate education, and it should use the work of previous studies on
the software engineering body of knowledge. A core set of required topics, from this
description, must be specified for all undergraduate software engineering degrees. The core
should have broad acceptance by the software engineering education community. Coverage
of the core will start with the introductory courses, extend throughout the curriculum, and be
supplemented by additional courses that may vary by institution, degree program, or
individual student.

[8] CCSE must strive to be international in scope. Despite the fact that curricular requirements
differ from country to country, CCSE must be useful to computing educators throughout the
world. Where appropriate, every effort should be made to ensure that the curriculum
recommendations are sensitive to national and cultural differences so that they will be
widely applicable throughout the world. The involvement by national computing societies
and volunteers from all countries should be actively sought and welcomed.

[9] The development of CCSE must be broadly based. To be successful, the process of creating
software engineering education recommendations must include participation from the many
perspectives represented by software engineering educators and by industry, commerce, and
government professionals.

[10] CCSE must include exposure to aspects of professional practice as an integral component
of the undergraduate curriculum. The professional practice of software engineering
encompasses a wide range of issues and activities, including problem solving, management,
ethical and legal concerns, written and oral communication, working as part of a team, and
remaining current in a rapidly changing discipline.

[11] CCSE must include discussions of strategies and tactics for implementation, along with
high-level recommendations. Although it is important for CCSE to articulate a broad vision
of software engineering education, the success of any curriculum depends heavily on
implementation details. CCSE must provide institutions with advice on the practical
concerns of setting up a curriculum.

CCSE Public Draft 3.1 – 2/6/04 12

2.2 Student Outcomes

As a first step in providing curriculum guidance, the following set of outcomes for an
undergraduate curriculum was developed. This is intended as a generic list that could be adapted
to a variety of software engineering program implementations.

Graduates of an undergraduate SE program must be able to
[1] Show mastery of the software engineering knowledge and skills necessary to begin practice

as a software engineer
Students, through regular reinforcement and practice, need to gain confidence in their abilities as
they progress through a software engineering program of study. In most instances, knowledge,
as well as skills, is acquired through a staged approach with different levels being achieved as
each academic term progresses. This should be the case for the most important aspects of the
program.

[2] Work as an individual and as part of a team to develop and deliver quality software artifacts
Students need to complete tasks that involve work as an individual, but also many other tasks
that entail work involving a group of individuals. For group work, students ought to be informed
of the nature of groups and of group activities/roles as explicitly as possible. This must include
an emphasis on the importance of such matters as a disciplined approach, the need to adhere to
deadlines, communication, and individual as well as team performance evaluations.

[3] Reconcile conflicting project objectives, finding acceptable compromises within limitations

of cost, time, knowledge, existing systems, and organizations
Students should engage in exercises that expose them to conflicting, and even changing,
requirements. There should be a strong element of the real world present in such cases to ensure
that the experience is realistic. Curriculum units should address these issues, with the aim of
ensuring high quality requirements and a feasible software design.

[4] Design appropriate solutions in one or more application domains using software engineering

approaches that integrate ethical, social, legal, and economic concerns
Throughout their study, students need to be exposed to a variety of appropriate approaches to
engineering design in the general sense, and to specific problem solving in various kinds of
applications domains for software. They need to be able to understand the strengths and the
weaknesses of the various options available and the implications of the selection of appropriate
approaches for a given situation. Their proposed design solutions must be made within the
context of ethical, social, legal, and economic concerns.

[5] Demonstrate an understanding of and apply current theories, models, and techniques that

provide a basis for problem identification and analysis, software design, development,
implementation, and verification

The presence of the Capstone project, an important final activity at the end of a software
engineering program of study, is of considerable importance in this regard. It offers students the
opportunity to tackle a major project and demonstrate their ability to bring together topics from a

CCSE Public Draft 3.1 – 2/6/04 13

variety of courses and apply them effectively. This mechanism allows students to demonstrate
their appreciation of the broad range of software engineering topics and their ability to apply
their skills to genuine effect. This should also include the ability to offer reflections on their
achievements.

[6] Demonstrate an understanding and appreciation for the importance of negotiation, effective

work habits, leadership, and good communication with stakeholders in a typical software
development environment

It is important to have within a program of study at least one major activity that involves having
to produce a solution for a client. Software engineers must take the view that they have to
produce software that is of genuine utility. Where possible, we should integrate within the
program a period of industrial experience, as well as invited lectures from practicing software
engineers, and even involvement in such matters as external software competitions. All this
provides a richer experience and helps to create an environment that is supportive of the
production of high quality software engineering graduates.

[7] Learn new models, techniques, and technologies as they emerge and appreciate the necessity

of such continuing professional development
By the time they come to the end of their program of study, students should be showing evidence
of being a self-motivated life-long learner. Such a situation is achieved through a series of stages
inserted at various places of a program of study. In later academic years, such as at the capstone
stage, students should be ready and willing to learn new ideas. But again, students need to be
exposed to best practice in this regard at earlier stages.

CCSE Public Draft 3.1 – 2/6/04 14

Chapter 3: The Software Engineering Discipline
This chapter discusses the nature of software engineering and some of the history and
background that is relevant to the development of software engineering curriculum guidance.
The purpose of the chapter is to provide context and rationale for the curriculum materials in
subsequent chapters.

3.1 The Discipline of Software Engineering

Since the dawn of computing in the 1940s, the applications and uses of computers have grown at
a staggering rate. Software plays a central role in almost all aspects of daily life: in government,
banking and finance, education, transportation, entertainment, medicine, agriculture, and law.
The number, size, and application domains of computer programs have grown dramatically; as a
result, billions are being spent on software development, and the livelihood and lives of most
people depend on the effectiveness of this development. Software products have helped us to be
more efficient and productive. They make us more effective problem solvers, and they provide
us with an environment for work and play that is safer, more flexible, and less confining. Despite
these successes, there are serious problems in the cost, timeliness, and quality of many software
products. The reasons for these problems are many:
• Software products are some of the most complex of man-made systems, and software by its

very nature has intrinsic difficulties (e.g., complexity, visibility, and changeability) that are
not easily overcome [Brooks 95].

• Programming techniques and processes that worked effectively for an individual or a small
team to develop modest-sized programs did not scale-up well to the development of large,
complex systems (systems with millions of lines of code, requiring years of work, by
hundreds of engineers).

• The pace of change in computer and software technology drives the demand for new and
evolved software products. This situation has created customer expectations and competitive
forces that strain our ability to produce quality of software within acceptable development
schedules.

It has been thirty-five years since the first organized, formal discussion of software engineering
as a discipline took place at the 1968 NATO Conference on Software Engineering [Naur 1969].
The term “software engineering” is now widely used in industry, government, and academia:
thousands of computing professionals go by the title “software engineer”; numerous
publications, groups and organizations, and professional conferences use the term software
engineering in their names; and there are many educational courses and programs on software
engineering. However, there are still disagreements and differences of opinion about the
meaning of the term. The following definitions provide several views of the meaning and nature
of software engineering. Nevertheless, they all possess a common thread, which states, or
strongly implies that software engineering is more than just coding - it includes quality, schedule
and economics, and the knowledge and application of principles and discipline.

CCSE Public Draft 3.1 – 2/6/04 15

Definitions of Software Engineering

Over the years, numerous definitions of the discipline of Software Engineering have been
presented. For the purpose of this document, we highlight the following definitions:

• "The establishment and use of sound engineering principles (methods) in order to obtain
economically software that is reliable and works on real machines" [Bauer 1972].

• "Software engineering is that form of engineering that applies the principles of computer
science and mathematics to achieving cost-effective solutions to software problems."
[CMU/SEI-90-TR-003]

• "The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software" [IEEE 1990].

There are aspects of each of these definitions that contribute to the perspective of software
engineering used in the construction of this volume. One particularly important aspect is that
software engineering builds on computer science and mathematics. But, in the engineering
tradition, it goes beyond this technical basis to draw upon a broader range of disciplines.

 These definitions clearly state that Software Engineering is about creating high-quality software
in a systematic, controlled, and efficient manner. Consequently, there are important emphases
on analysis and evaluation, specification, design, and evolution of software. In addition, there are
issues related to management and quality, to novelty and creativity, to standards, to individual
skills, and to teamwork and professional practice that play a vital role in software engineering.

3.2 Software Engineering as an Engineering Discipline

The study and practice of software engineering is influenced both by its roots in computer
science and its emergence as an engineering discipline. A significant amount of current software
engineering research is conducted within the context of computer science and computing
departments or colleges. Similarly, software engineering degree programs are being developed
by such academic units as well as within engineering colleges. Thus, the discipline of software
engineering can be seen as an engineering field with a stronger connection to its underlying
scientific discipline than the more traditional engineering fields. In the process of constructing
this volume, particular attention has been paid to incorporating the practices of engineering into
the development of software, so as to distinguish this curriculum from computer science
curricula. To prepare for the more detailed development of these ideas, this section examines the
engineering methodology and how it applies to software development.

We must also point out that although there are strong similarities between software engineering
and more traditional engineering (as listed in section 3.2.1), there are also some differences (not
necessarily to the detriment of software engineering):

• Foundations are primarily in computing, not in natural sciences.
• Focus is on discrete rather than continuous mathematics.
• Concentration is on abstract/logical entities instead of concrete/physical artifacts.

3.2.1 Characteristics of Engineering

CCSE Public Draft 3.1 – 2/6/04 16

There is a set of characteristics that is not only common to every engineering discipline, but is so
predominant and critical that they can be used to describe the underpinnings of engineering. It is
these underpinnings that should be viewed as desirable characteristics of software engineers.
Thus they have influenced the development of software engineering and the contents of this
volume.
[1] Engineers proceed by making a series of decisions, carefully evaluating options, and

choosing an approach at each decision-point that is appropriate for the current task in the
current context. Appropriateness can be judged by tradeoff analysis, which balances costs
against benefits.

[2] Engineers measure things, and when appropriate, work quantitatively; they calibrate and
validate their measurements; and they use approximations based on experience and
empirical data.

[3] Engineers emphasize the use of a disciplined process when creating a design.

[4] Engineers can have multiple roles: research, development, design, production, testing,
construction, operations, management, and others such as sales, consulting, and teaching.

[5] Engineers use tools to apply process systematically. Therefore, the choice and use of
appropriate tools is key to engineering.

[6] Engineering disciplines advance by the development and validation of principles, standands,
and best practices.

[7] Engineers reuse designs and design artifacts.

It should be noted that while the term engineer and engineering will be used extensively in the
following sections, this document is about the design, development and implementation of
undergraduate software engineering curricula. It must be acknowledged that much of the work
in this document is based on the work of numerous individuals and groups that have advanced
the state of computer science and information technology, and have developed programs that
help prepare graduates for the practice software development in a professional manner.

3.2.2 Engineering design

Design is central to any engineering activity, and it plays a critical role in regard to software. In
general, engineering design activities refer to the definition of a new artifact by finding technical
solutions to specific practical issues, while taking into account economic, legal, and social
considerations. As such, engineering design provides the prerequisites for the "physical"
realization of a solution, by following a systematic process, that best satisfies a set of
requirements within potentially conflicting constraints.

Software engineering differs from traditional engineering because of the special nature of
software, which places a greater emphasis on abstraction, modeling, information organization
and representation, and the management of change. Software engineering also includes
implementation and quality control activities normally considered in the manufacturing process
design and manufacturing steps of the product cycle. Furthermore, continued evolution (i.e.,
“maintenance”) is also of more critical importance for software. Even with this broader scope,
however, the core activity of software engineering is still the kind of decision-making known as

CCSE Public Draft 3.1 – 2/6/04 17

engineering design. One of the greatest challenges in software engineering is that engineering
design and the supporting process must be applied at multiple levels of abstraction. An
increasing emphasis on reuse and component-based development hold hope for new, improved
practices in this area.

3.2.3 Domain-specific software engineering

Within a specific domain, an engineer relies on specific education and experience to evaluate
possible solutions, keeping in mind various factors relating to function, cost, performance and
manufacturability. Engineers have to determine which standard parts can be used and which
parts have to be developed from scratch. To make the necessary decisions, they must have a
fundamental knowledge of the domain and related specialty subjects.

Domain-specific techniques, tools, and components typically provide the most compelling
software engineering success stories. Great leverage has been achieved in well-understood
domains where standard implementation approaches have been widely adopted. To be well
prepared for professional practice, graduates of software engineering programs should come to
terms with the fundamentals of at least one application domain. That is, they should understand
the problem space that defines the domain as well as common approaches, including standard
components (if any), used in producing software to solve problems in that domain.

3.3 Professional Practice

A key objective of any engineering program is to provide graduates with the tools necessary to
begin the professional practice of engineering. As indicated earlier, an important guiding
principle for this document is “The education of all software engineering students must include
student experiences with the professional practice of software engineering.” The content and
nature of such experiences are discussed in subsequent chapters, while this section provides
rationale and background for the inclusion of professional practice elements in a software
engineering curriculum.

3.3.1 Rationale

Engineers have special obligations that require them to apply specialist knowledge on behalf of
members of society who do not themselves have such knowledge. All of the characteristics of
engineering discussed above relate, directly or indirectly, to the professional practice of
engineering. Those most directly relevant to professional practice speak to the need for
“communications and teamwork skills”, “ethical and professional principles”, “engineering
productivity and quality”, “work in a disciplined and systematic manner”, “responsibility to
society” and the expectation that engineers continue to “update their knowledge about new
methods, techniques and technology.” Employers of graduates from engineering programs often
speak to these same needs [Denning 1992]. Each year, the National Association of Colleges and
Employers conducts a survey to determine what qualities employers consider most important in
applicants seeking employment [NACE 2003]. In 2003, employers were asked to rate the
importance of candidate qualities and skills on a five-point scale, with five being “extremely
important” and one being “not important.” Communication skills (4.7 average), honesty/integrity
(4.7), teamwork skills (4.6), interpersonal skills (4.5), motivation/initiative (4.5), and strong
work ethic (4.5) were the most desired characteristics.

CCSE Public Draft 3.1 – 2/6/04 18

The dual challenges of society’s critical dependence on the quality and cost of software, and the
relative immaturity of software engineering, make attention to professional practice issues even
more important to software engineering programs than many other engineering programs.
Graduates of software engineering programs need to arrive in the workplace equipped to meet
these challenges and to help evolve the software engineering discipline into a more professional
and accepted state. Like other engineering professionals, software engineers need to seek
quantitative data on which to base decisions, yet also be able to function effectively in an
environment of ambiguity and avoid the limitations of over-simplified or unverified "formula-
based" modeling.

3.3.2 Software Engineering Code of Ethics and Professional Practices

Software Engineering as a profession has obligations to society. The products produced by
software engineers affect the lives and livelihoods of the clients and users of those products.
Hence, software engineers need to act in an ethical and professional manner. The preamble to the
Software Engineering Code of Ethics and Professional Practice [ACM 1998] states

“Because of their roles in developing software systems, software engineers have
significant opportunities to do good or cause harm, to enable others to do good or
cause harm, or to influence others to do good or cause harm. To ensure, as much as
possible, that their efforts will be used for good, software engineers must commit
themselves to making software engineering a beneficial and respected profession. In
accordance with that commitment, software engineers shall adhere to the following
Code of Ethics and Professional Practice.”

To help insure ethical and professional behavior, software engineering educators have an
obligation to not only make their students familiar with the Code, but to also find ways for
students to engage in discussion and activities that illustrate and illuminate the Code’s eight
principles, including common dilemmas facing professional engineers in typical employment
situations.

3.3.3 Curriculum Support for Professional Practice

A curriculum can have an important direct effect on some professional practice factors (e.g.,
teamwork, communication, and analytic skills), while others (e.g. strong work ethic, self-
confidence) are subject to the more subtle influence of a college education on individual’s
character, personality and maturity. In this volume, elements of professional practice that should
be part of any curriculum, and expected student outcomes, are identified in Chapter 4. Chapters
5 and 6 contain guidance and ideas for incorporating material about professional practice into a
software engineering curriculum. In particular, there is consideration of material directly
supportive of professional practice (technical communications, ethics, engineering economics,
etc.) and ideas about the modeling of work environments (case studies, laboratory work, team
project courses).

There are many elements, some outside the classroom, which can have a significant effect on a
student’s preparation for professional practice. The following are some examples: involvement
in the core curriculum by faculty who have professional experience; student work experience as
an intern or as part of a cooperative education program; and extracurricular activities, such as
attending colloquia, field trips visits to industry, and participating in student professional clubs
and activities.

CCSE Public Draft 3.1 – 2/6/04 19

3.4 Prior Software Engineering Education and Computing Curriculum
Efforts

In the late 1970s, the IEEE-CS initiated an effort to construct curriculum recommendations for
software engineering, which was used in the creation of a number of masters programs across in
the U.S. [Freeman 19976, Freeman 1978]. While this effort centered on graduate education, it
formed the basis for a focus on software engineering education in general. In the U.K., the first
undergraduate level named software engineering program commenced at Imperial College in
1985 and at University of Sheffield in 1988 [Finkelstein 1993, Cowling 1998].

In the late 1980s and early 1990s, software engineering education was fostered and supported by
the efforts of the Education Group of the Software Engineering Institute (SEI), at Carnegie
Mellon University. These efforts included the following: surveying and reporting on the state of
software engineering education, publishing curriculum recommendations for graduate software
engineering programs, organizing and facilitating workshops for software engineering educators,
and publishing software education curriculum modules [Budgen 2003, Tomayko 1999].

The SEI initiated and sponsored the first Conference on Software Engineering Education and
Training (CSEET), held in 1987. The CSEET has since provided a forum for SE educators to
meet, present, and discuss SE education issues, methods, and activities. In 1995, as part of its
education program, the SEI started the Working Group on Software Engineering Education and
Training (WGSEET) (http://www.sei.cmu.edu/collaborating/ed/workgroup-ed.html). The
WGSEET objective is to investigate issues, propose solutions and actions, and share information
and best practices with the software engineering education and training community. In 1999, the
Working Group produced a technical report offering guidelines on the design and
implementation of undergraduate software engineering programs [Bagert 1999].

In 1993, the IEEE-CS and the ACM established the IEEE-CS/ACM Joint Steering Committee
for the Establishment of Software Engineering as a Profession. Subsequently, the Steering
committee was replaced by the Software Engineering Coordinating Committee (SWECC), which
coordinated the work of three efforts: the development of a Code of Ethics and Professional
Practices [ACM 1998]; the Software Engineering Education Project (SWEEP), which developed
a draft accreditation criteria for undergraduate programs in software engineering [Barnes 1998];
and the development of a Guide to the Software Engineering Body of Knowledge (SWEBOK)
[Bourque 2001]. Also, Curriculum 1991 report [Tucker 1991] and the CCCS volume [ACM
2001] has been a major influence on the structure and content of this document. All these efforts
have influenced the philosophy and the content of this volume.

3.5 SWEBOK and other BOK Efforts

A major challenge in providing curriculum guidance for new and emerging, or dynamic,
disciplines is the identification and specification of the underlying content of the discipline.
Since the computing disciplines are both relatively new and dynamic, the specification of a
"body of knowledge" is critical.

In Chapter 4, a body of knowledge is specified that supports software engineering education
curricula (called SEEK - Software Engineering Education Knowledge). The organization and

CCSE Public Draft 3.1 – 2/6/04 20

content was influenced by a number of previous efforts at describing the knowledge that comes
from other related disciplines. The following is a description of such efforts:
• The SWEBOK is a comprehensive description of the knowledge needed for the practice of

software engineering. One of the objectives of this project was to "Provide a foundation for
curriculum development ...". To support this objective, the SWEBOK includes a rating
system for its knowledge topics based on Bloom's levels of educational objectives. Although
the SWEBOK was one of the primary sources used in the development of the SEEK and
there has been close communication between the SWEBOK and CCSE projects, there were
assumptions and features of the SWEBOK that differentiate the two efforts:

¾ The SWEBOK is intended to cover knowledge after four years of practice.
¾ The SWEBOK intentionally does not cover non-software engineering knowledge that a

software engineer must know.
¾ The CCSE is intended to support only undergraduate software engineering education.

• The PMBOK (Guide to the Project Management Body of Knowledge) [PMI 2000] provides a
description of knowledge about project management (not limited to software projects).
Besides its relevance to software project management, the PMBOK's organization and style
has influenced similar, subsequent efforts in the computing disciplines.

• The IS'97 report (Model Curriculum and Guidelines for Undergraduate Degree Programs in
Information Systems) [Davis, 1997] describes a model curriculum for undergraduate degree
programs in Information Systems. The document includes a description of an IS body of
knowledge (which included SE knowledge) and also a metric (similar to Bloom's levels in
[Bloom 1956]) for prescribing the required depth of knowledge for undergraduates.

• The report "Computing as a Discipline" [ACM 1989] provides a comprehensive definition of
computing and formed the basis for the work on Computing Curriculum 1991, and its
successor Computing Curriculum 2001. It specifies nine subject areas that cover the
computing discipline.

• The Guidelines for Software Engineering Education [Bagert 1999] (developed by the
WGSEET), describes a curriculum model for undergraduate software engineering education
that is based on a body of knowledge consisting of four areas: Foundations, Core, Recurring
and Support.

CCSE Public Draft 3.1 – 2/6/04 21

Chapter 4: Overview of Software Engineering Education
Knowledge

4.1 Process of Determining the SEEK

The development model chosen for determining CCSE was based on the model used to construct
the CCCS volume. The initial selection of the SEEK (Software Engineering Education
Knowledge) areas was based on the SWEBOK knowledge areas and multiple discussions with
dozens of SEEK area volunteers. The SEEK area volunteers were divided into groups
representing each individual SEEK area, where each group contained roughly seven volunteers.
These groups were assigned the task of providing the details of the units that compose a
particular educational knowledge area and the further refinement of these units into topics. To
facilitate their work, references to existing related software engineering body of knowledge
efforts (e.g. SWEBOK, CSDP Exam, and SEI curriculum recommendations) and a set of
templates for supporting the generation of units and topics were provided.

After the volunteer groups generated an initial draft of their individual education knowledge area
details, the steering committee held a face-to-face forum that brought together education
knowledge and pedagogy area volunteers to iterate over the individual drafts and generate an
initial draft of the SEEK (see Appendix B for an attendee list). This workshop held with this
particular goal mirrored a similar overwhelmingly successful workshop held by CCCS at this
very point in their development process. Once the content of the education knowledge areas was
stabilized, topics were identified to be core or elective. Topics were also labeled with one of
three Bloom's taxonomy's levels of educational objectives; namely, knowledge, comprehension,
or application. Only these three levels of learning were chosen from Bloom's taxonomy, because
they represent what knowledge may be reasonably learned during an undergraduate education.

After the workshop, a draft of the SEEK was completed. Subsequently, the SEEK draft went
through an intensive internal review (by a group of selected experts in software engineering) and
several widely publicized public reviews. After the completion of each review, the steering
committee iterated over the reviewer comments to further refine and improve the contents of the
SEEK.

4.2 Knowledge Areas, Units, and Topics

Knowledge is a term used to describe the whole spectrum of content for the discipline:
information, terminology, artifacts, data, roles, methods, models, procedures, techniques,
practices, processes, and literature. The SEEK is organized hierarchically into three levels. The
highest level of the hierarchy is the education knowledge area, representing a particular sub-
discipline of software engineering that is generally recognized as a significant part of the body of
software engineering knowledge that an undergraduate should know. Knowledge areas are high-
level structural elements used for organizing, classifying, and describing software engineering
knowledge. Each area is identified by an abbreviation, such as PRF for professional practices,
and is represented in this document with the color orange. Each area is broken down into smaller
divisions called units, which represent individual thematic modules within an area. Adding a
two or three letter suffix to the area identifies each unit; as an example, PRF.com is a unit on

CCSE Public Draft 3.1 – 2/6/04 22

communication skills. Units are represented in this document with the color yellow. Each unit is
further subdivided into a set of topics, which are the lowest level of the hierarchy. Topics are
represented with either the color teal or white.

4.3 Core Material

In determining the SEEK, the steering committee recognizes that software engineering, as a
discipline, is relatively young in its maturation, and that common agreement on the definition of
an education body of knowledge is evolving. The SEEK developed and presented in this
document is based on a variety of previous studies and commentaries on the recommended
content for the discipline. It was specially designed to support the development of
undergraduate software engineering curricula, and therefore, does not include all the knowledge
that would exist in a more generalized body of knowledge representation. The steering
committee has therefore sought to define a core consisting of the essential material that
professionals teaching software engineering agree is necessary for anyone to obtain an
undergraduate degree in this field. By insisting on a broad consensus in the definition of the core,
the steering committee hopes to keep the core as small as possible, giving institutions the
freedom to tailor the elective components of the curriculum in ways that meet their individual
needs. Material offered as part of an undergraduate program that falls outside the core is
considered to be elective. Core topics are represented with the color teal and elective topics are
represented with no color (white).

The following points should be emphasized to clarify the relationship between the SEEK and the
steering committee's ultimate goal of providing undergraduate software engineering curriculum
recommendations.
• The core is not a complete curriculum. Because the core is defined as minimal, it does not,

by itself, constitute a complete undergraduate curriculum. Every undergraduate program will
include additional units, both within and outside the body of knowledge, which this
document does not attempt address.

• Core units are not necessarily limited to a set of introductory courses taken early in the
undergraduate curriculum. Although many of the units defined as core are indeed
introductory, there are also some core units that clearly must be covered only after students
have developed significant background in the field. For example, topics in such areas as
project management, requirements elicitation, and abstract high-level modeling may require
knowledge and sophistication that lower-division students do not possess. Similarly,
introductory courses may include elective units alongside the coverage of core material. The
designation core simply means required and says nothing about the level of the course in
which it appears.

4.4 Unit of Time

The SEEK must define a metric that establishes a standard of measurement, in order to judge the
actual amount of time required to cover a particular unit. Choosing such a metric was quite
difficult for the steering committee because no standard measure is recognized throughout the
world. For consistency with the earlier curriculum reports, namely the other computing curricula
volumes related to this effort, the task force has chosen to express time in hours. An hour

CCSE Public Draft 3.1 – 2/6/04 23

corresponds to the actual in-class time required to present the material in a traditional lecture-
oriented format (referred to in this document as contact hours). To dispel any potential
confusion, however, it is important to underscore the following observations about the use of
lecture hours as a measure:
• The steering committee does not seek to endorse the lecture format. Even though we have

used a metric that has its roots in a classical, lecture-oriented format, the steering committee
believes that there are other styles—particular given recent improvements in educational
technology—that can be at least as effective. For some of these styles, the notion of hours
may be difficult to apply. Even so, the time specifications should at least serve as a
comparative measure, in the sense that a 5-hour unit will presumably take roughly five times
as much time to cover as a 1-hour unit, independent of the teaching style.

• The hours specified do not include time spent outside of class. The time assigned to a unit
does not include the instructor’s preparation time or the time students spend outside of class.
As a general guideline, the amount of out-of-class work is approximately three times the in-
hours (3 in class and 9 outside).

• The hours listed for a unit represent a minimum level of coverage. The time measurements
assigned for each unit should be interpreted as the minimum amount of time necessary to
enable a student to perform the learning objectives for that unit. It is always appropriate to
spend more time on a unit than the mandated minimum.

4.5 Relationship of the SEEK to the Curriculum

The SEEK does not represent the curriculum, but rather provides the foundation for the design,
implementation, and delivery of the educational units that make up a software engineering
curriculum. Other chapters of the CCSE Volume provide guidance and support on how to use the
SEEK to develop a curriculum. In particular, the organization and content of the knowledge
areas and knowledge units should not be deemed to imply how the knowledge should be
organized into education units or activities. For example, the SEEK does not advocate a
sequential ordering of the KAs (1st CMP, 2nd FND, 3rd PRF, etc.). Nor does it suggest how
topics and units should be combined into education units. Furthermore, the SEEK is not intended
to purport any special curriculum development methodology (waterfall, incremental, cyclic,
etc.).

4.6 Selection of Knowledge Areas

Although the SWEBOK did serve as a starting point for determining knowledge areas, both the
CCSE Steering Committee and the SEEK area volunteers felt strongly about emphasizing the
academic discipline of software engineering. During the SEEK development process, the area
chosen to represent the theoretical and scientific foundations of developing software products
subsequently grew to the size of one half of the core. This prompted the Steering Committee to
reevaluate whether the original goals of emphasizing the discipline were indeed being met. The
resulting set of knowledge areas are believed to stress the fundamental principles, knowledge,
and practices that underlie the software engineering discipline.

CCSE Public Draft 3.1 – 2/6/04 24

4.7 SE Education Knowledge Areas

In this section, we describe the ten knowledge areas that make up the SEEK: Computing
Essentials (CMP), Mathematical & Engineering Fundamentals (FND), Professional Practice
(PRF), Software Modeling & Analysis (MAA), Software Design (DES), Software Verification &
Validation (VAV), Software Evolution (EVL), Software Process (PRO), Software Quality
(QUA), and Software Management (MGT). The knowledge areas do not include material about
continuous mathematics or the natural sciences; the needs in these areas will be discussed in
other parts of the CCSE volume. For each knowledge area, there is a short description and then a
table that delineates the units and topics for that area. For each knowledge unit, recommended
contact hours are designated. For each topic, a Bloom taxonomy level (indicating what capability
a graduate should possess) and the topic’s relevance (indicating whether the topics is essential,
desirable, or optional to the core) is designated. Table 1 summarizes the SEEK knowledge areas,
with their sets of knowledge units, and lists the minimum number of hours recommended for
each area and unit.

Bloom's attributes are specified using one of the letters k, c, or a, which represent:
• Knowledge (k) - Remembering previously learned material. Test observation and recall of

information; that is, "bring to mind the appropriate information" (e.g. dates, events, places,
knowledge of major ideas, mastery of subject matter).

• Comprehension (c) - Understanding information and the meaning of material presented. For
example, be able to translate knowledge to a new context, interpret facts, compare, contrast,
order, group, infer causes, predict consequences, etc.

• Application (a) - Ability to use learned material in new and concrete situations. For example,
using information, methods, concepts, and theories to solve problems requiring the skills or
knowledge presented.

A topic's relevance to the core is represented as follows:
• Essential (E) - The topic is part of the core.

• Desirable (D) - The topic is not part of the SEEK core, but it should be included in the core
of a particular program if possible; otherwise, it should be considered as part of elective
materials.

• Optional (O) - The topic should be considered as elective only.

CCSE Public Draft 3.1 – 2/6/04 25

Table 1: SEEK Knowledge Areas and Knowledge Units

KA/KU Title hrs KA/KU Title hrs
CMP Computing Essentials 172 VAV Software V & V 42
CMP.cf Computer Science foundations 140 VAV.fnd V&V terminology and foundations 5
CMP.ct Construction technologies 20 VAV.rev Reviews 6
CMP.tl Construction tools 4 VAV.tst Testing 21
CMP.fm Formal construction methods 8 VAV.hct Human computer UI testing and

evaluation
6

 VAV.par Problem analysis and reporting 4
FND Mathematical & Engineering Fundamentals 89 EVL Software Evolution 10
FND.mf Mathematical foundations 56 EVO.pro Evolution processes 6
FND.ef Engineering foundations for software 23 EVO.ac Evolution activities 4
FND.ec Engineering economics for software 10
PRF Professional Practice 35 PRO Software Process 13
PRF.psy Group dynamics / psychology 5 PRO.con Process concepts 3
PRF.com Communications skills (specific to SE) 10 PRO.imp Process implementation 10
PRF.pr Professionalism 20

MAA Software Modeling & Analysis 53 QUA Software Quality 16
MAA.md Modeling foundations 19 QUA.cc Software quality concepts and

culture
2

MAA.tm Types of models 12 QUA.std Software quality standards 2
MAA.af Analysis fundamentals 6 QUA.pro Software quality processes 4
MAA.rfd Requirements fundamentals 3 QUA.pca Process assurance 4
MAA.er Eliciting requirements 4 QUA.pda Product assurance 4
MAA.rsd Requirements specification & documentation 6
MAA.rv Requirements validation 3
DES Software Design 45 MGT Software Management 19
DES.con Design concepts 3 MGT.con Management concepts 2
DES.str Design strategies 6 MGT.pp Project planning 6
DES.ar Architectural design 9 MGT.per Project personnel and organization 2
DES.hci Human computer interface design 12 MGT.ctl Project control 4
DES.dd Detailed design 12 MGT.cm Software configuration management 5
DES.ste Design support tools and evaluation 3

4.8 Computing Essentials

Description

Computing essentials includes the computer science foundations that support the design and
construction of software products. This area also includes knowledge about the transformation
of a design into an implementation, the tools used during this process, and formal software
construction methods.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

CMP Computing Essentials 172

CMP.cf Computer Science foundations 140
CMP.cf.1 Programming Fundamentals (CCCS PF1 to PF5) (control & data,

typing, recursion)
a E

CMP.cf.2 Algorithms, Data Structures/Representation (static & dynamic)
and Complexity (CCCS AL 1 to AL 5)

a E CMP.ct.1,CMP.f
m.5,MAA.cc.1

CCSE Public Draft 3.1 – 2/6/04 26

CMP.cf.3 Problem solving techniques a E CMP.cf.1
CMP.cf.4 Abstraction – use and support for (encapsulation, hierarchy, etc) a E MAA.md.1
CMP.cf.5 Computer organization (parts of CCCS AR 1 to AR 5) c E
CMP.cf.6 Basic concept of a system c E MAA.rfd.7
CMP.cf.7 Basic user human factors (I/O, error messages, robustness) c E DES.hci
CMP.cf.8 Basic developer human factors (comments, structure, readability) c E CMP.cf.1
CMP.cf.9 Programming language basics (key concepts from CCCS PL1-

PL6)
a E CMP.ct.3,CMP.ct

.4
CMP.cf.10 Operating system basics (key concepts from CCCS OS1-OS5) c E CMP.ct.10,CMP.

ct.15
CMP.cf.11 Database basics c E DES.con.2
CMP.cf.12 Network communication basics c E
CMP.cf.13 Semantics of programming languages D

CMP.ct Construction technologies 20
CMP.ct.1 API design and use a E DES.dd.4
CMP.ct.2 Code reuse and libraries a E CMP.cf.1
CMP.ct.3 Object-oriented run-time issues (e.g. polymorphism, dynamic

binding, etc.)
a E CMP.cf.1,9,DES.

str.2
CMP.ct.4 Parameterization and generics a E CMP.cf.1
CMP.ct.5 Assertions, design by contract, defensive programming a E MAA.md.2
CMP.ct.6 Error handling, exception handling, and fault tolerance a E DES.con.2,VAV.t

st.2,VAV.tst.9
CMP.ct.7 State-based and table driven construction techniques c E FND.mf.7,MAA.t

m.2,CMP.cf.10
CMP.ct.8 Run-time configuration and internationalization a E DES.hci.6
CMP.ct.9 Grammar-based input processing (parsing) a E FND.mf.8
CMP.ct.10 Concurrency primitives (e.g. semaphores, monitors, etc.) a E CMP.cf.10
CMP.ct.11 Middleware (components and containers) c E DES.dd.3,5
CMP.ct.12 Construction methods for distributed software a E CMP.cf.2
CMP.ct.13 Constructing heterogeneous (hardware and software) systems;

hardware-software codesign
c E DES.ar.3

CMP.ct.14 Performance analysis and tuning k E FND.ef.4,DES.co
n.6,CMP.tl.4,VAV
.fnd.4

CMP.ct.15 Platform standards (Posix etc.) D
CMP.ct.16 Test-first programming D VAV.tst.1

CMP.tl Construction tools 4 DES.ste.1
CMP.tl.1 Development environments a E
CMP.tl.2 GUI builders c E DES.hci
CMP.tl.3 Unit testing tools c E VAV.tst.1
CMP.tl.4 Application oriented languages (e.g. scripting, visual, domain-

specific, markup, macros, etc.)
c E

CMP.tl.5 Profiling, performance analysis and slicing tools D CMP.ct.14

CMP.fm Formal construction methods 8 DES.dd.9,MAA.af

.6,EVO.ac.7
CMP.fm.1 Application of abstract machines (e.g. SDL, Paisley, etc.) k E
CMP.fm.2 Application of specification languages and methods (e.g. ASM,

B, CSP, VDM, Z)
a E MAA.md.3,MAA.r

sd.3
CMP.fm.3 Automatic generation of code from a specification k E
CMP.fm.4 Program derivation c E
CMP.fm.5 Analysis of candidate implementations c E MAA.cf.2
CMP.fm.6 Mapping of a specification to different implementations k E
CMP.fm.7 Refinement c E

CCSE Public Draft 3.1 – 2/6/04 27

CMP.fm.8 Proofs of correctness D FND.mf.3

4.9 Mathematical and Engineering Fundamentals

Description

The mathematical and engineering fundamentals of software engineering provide theoretical and
scientific underpinnings for the construction of software products with desired attributes. These
fundamentals support describing software engineering products in a precise manner. They
provide the mathematical foundations to model and facilitate reasoning about these products and
their interrelations, as well as form the basis for a predictable design process. A central theme is
engineering design: a decision-making process of iterative nature, in which computing,
mathematics, and engineering sciences are applied to deploy available resources efficiently to
meet a stated objective.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

FND Mathematical and Engineering Fundamentals 89

FND.mf Mathematical foundations* 56
FND.mf.1 Functions, Relations and Sets (CCCS DS1) a E
FND.mf.2 Basic Logic (propositional and predicate) (CCCS DS2) a E MAA.md.2,3
FND.mf.3 Proof Techniques (direct, contradiction, inductive) (CCCS DS3) a E CMP.fm.8
FND.mf.4 Basic Counting (CCCS DS4) a E
FND.mf.5 Graphs and Trees (CCCS DS5) a E CMP.cf.2
FND.mf.6 Discrete Probability (CCCS DS6) a E FND.ef.2
FND.mf.7 Finite State Machines, regular expressions c E CMP.ct.7,MAA.t

m.2
FND.mf.8 Grammars c E CMP.ct.9
FND.mf.9 Numerical precision, accuracy and errors c E
FND.mf.10 Number Theory D
FND.mf.11 Algebraic Structures O

FND.ef Engineering foundations for software 23
FND.ef.1 Empirical methods and experimental techniques (e.g., computer-

related measuring techniques for CPU and memory usage)
c E VAV.fnd.4,VAV.h

ct.6
FND.ef.2 Statistical analysis (including simple hypothesis testing,

estimating, regression, correlation etc.)
a E FND.mf.6

FND.ef.3 Measuring individual's performance (e.g. PSP) k E PRO.con.5,PRO.i
mp.4

FND.ef.4 Systems development (e.g. security, safety, performance, effects
of scaling, feature interaction, etc.)

k E MAA.af.4,DES.co
n.6,VAV.fnd.4,VA
V.tst.9

FND.ef.5 Engineering design (e.g. formulation of problem, alternative
solutions, feasibility, etc.)

c E FND.ec.3,MAA.af
.1

FND.ef.6 Theory of measurement (e.g. criteria for valid measurement) c E
FND.ef.7 Engineering science for other engineering disciplines (strength of

materials, digital system principles, logic design, fundamentals of
thermodynamics, etc.)

 O

FND.ec Engineering economics for software 10 PRF.pr.6
FND.ec.1 Value considerations throughout the software lifecycle k E
FND.ec.2 Generating system objectives (e.g. participatory design,

stakeholder win-win, quality function deployment, prototyping,
c E PRF.psy.4,MAA.

er.2

CCSE Public Draft 3.1 – 2/6/04 28

etc.)
FND.ec.3 Evaluating cost-effective solutions (e.g. benefits realization,

tradeoff analysis, cost analysis, return on investment, etc.)
c E DES.con.7,MAA.

af.4,MGT.pp.4
FND.ec.4 Realizing system value (e.g. prioritization, risk resolution,

controlling costs, etc.)
k E MAA.af.4,MGT.p

p.6

* Topics 1-6 correspond to Computer Science curriculum guidelines for discrete structures 1-6

4.10 Professional Practice

Description

Professional Practice is concerned with the knowledge, skills, and attitudes that software
engineers must possess to practice software engineering in a professional, responsible, and
ethical manner. The study of professional practices includes the areas of technical
communication, group dynamics and psychology, and social and professional responsibilities.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

PRF Professional Practice 35

PRF.psy Group dynamics / psychology 5
PRF.psy.1 Dynamics of working in teams/groups a E
PRF.psy.2 Individual cognition (e.g. limits) k E DES.hci.10
PRF.psy.3 Cognitive problem complexity k E MAA.rfd.8
PRF.psy.4 Interacting with stakeholders c E FND.ec.2
PRF.psy.5 Dealing with uncertainty and ambiguity k E

PRF.com Communications skills (specific to SE) 10
PRF.com.1 Reading, understanding and summarizing reading (e.g. source

code, documentation)
a E MAA.rsd.1

PRF.com.2 Writing (assignments, reports, evaluations, justifications, etc.) a E
PRF.com.3 Team and group communication (both oral and written, email,

etc.)
a E MGT.per

PRF.com.4 Presentation skills a E

PRF.pr Professionalism 20
PRF.pr.1 Accreditation, certification, and licensing k E
PRF.pr.2 Codes of ethics and professional conduct c E
PRF.pr.3 Social, legal, historical, and professional issues and concerns c E
PRF.pr.4 The nature of, and role of professional societies k E
PRF.pr.5 The nature and role of software engineering standards k E MAA.rsd.1,CMP.c

t.14,PRO.imp.3,7,
QUA.std

PRF.pr.6 The economic impact of software c E FND.ec
PRF.pr.7 Employment contracts k E

CCSE Public Draft 3.1 – 2/6/04 29

4.11 Software Modeling and Analysis

Description

Modeling and analysis can be considered core concepts in any engineering discipline, because
they are essential to documenting and evaluating design decisions and alternatives. Modeling
and analysis is first applied to the analysis, specification, and validation of requirements.
Requirements represent the real-world needs of users, customers, and other stakeholders affected
by the system. The construction of requirements includes an analysis of the feasibility of the
desired system, elicitation and analysis of stakeholders' needs, the creation of a precise
description of what the system should and should not do along with any constraints on its
operation and implementation, and the validation of this description or specification by the
stakeholders.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

MAA Software Modeling and Analysis 53

MAA.md Modeling foundations 19 PRO.con.3,QUA.

pro.1,QUA.pda.3
MAA.md.1 Modeling principles (e.g. decomposition, abstraction,

generalization, projection/views, explicitness, use of formal
approaches, etc.)

a E CMP.cf.4

MAA.md.2 Pre & post conditions, invariants c E CMP.ct.5
MAA.md.3 Introduction to mathematical models and specification languages

(Z, VDM, etc.)
c E MAA.rsd.3,CMP.f

m.2
MAA.md.4 Properties of modeling languages k E
MAA.md.5 Syntax vs. semantics (understanding model representations) c E CMP.cf.9
MAA.md.6 Explicitness (make no assumptions, or state all assumptions) k E

MAA.tm Types of models 12 MAA.md
MAA.tm.1 Information modeling (e.g. entity-relationship modeling, class

diagrams, etc.)
a E MAA.rsd.3,DES.d

d.5
MAA.tm.2 Behavioral modeling (e.g. structured analysis, state diagrams,

use case analysis, interaction diagrams, failure modes and
effects analysis, fault tree analysis etc.)

a E FND.mf.7,MAA.er
.2,MAA.rsd.3,DE
S.dd.5

MAA.tm.3 Structure modeling (e.g. architectural, etc.) c E MAA.rfd.7
MAA.tm.4 Domain modeling (e.g. domain engineering approaches, etc.) k E
MAA.tm.5 Functional modeling (e.g. component diagrams, etc.) c E
MAA.tm.6 Enterprise modeling (e.g. business processes, organizations,

goals, etc.)
 D

MAA.tm.7 Modeling embedded systems (e.g. real-time schedulability
analysis, external interface analysis, etc.)

 D

MAA.tm.8 Requirements interaction analysis (e.g. feature interaction, house
of quality, viewpoint analysis, etc.)

 D

MAA.tm.9 Analysis Patterns (e.g. problem frames, specification re-use, etc.) D

MAA.af Analysis fundamentals 6
MAA.af.1 Analyzing well-formedness (e.g. completeness, consistency,

robustness, etc.)
a E

MAA.af.2 Analyzing correctness (e.g. static analysis, simulation, model
checking, etc.)

a E

MAA.af.3 Analyzing quality (non-functional) requirements (e.g. safety,
security, usability, performance, root cause analysis, etc.)

a E FND.ef.4,QUA.pd
a,DES.con.6,VAV

CCSE Public Draft 3.1 – 2/6/04 30

.fnd.4,VAV.tst.9,V
AV.hct,EVO.ac.4

MAA.af.4 Prioritization, trade-off analysis, risk analysis, and impact
analysis

c E FND.ec.3,4,QUA.
pda.4

MAA.af.5 Traceability c E DES.ar.4,EVO.pr
o.2

MAA.af.6 Formal analysis k E CMP.fm

MAA.rfd Requirements fundamentals 3
MAA.rfd.1 Definition of requirements (e.g. product, project, constraints,

system boundary, external, internal, etc.)
c E

MAA.rfd.2 Requirements process c E PRO.con.3
MAA.rfd.3 Layers/levels of requirements (e.g. needs, goals, user

requirements, system requirements, software requirements, etc.)
c E MAA.rsd

MAA.rfd.4 Requirements characteristics (e.g. testable, non-ambiguous,
consistent, correct, traceable, priority, etc.)

c E MAA.af.5

MAA.rfd.5 Managing changing requirements c E MGT.ctl.1
MAA.rfd.6 Requirements management (e.g. consistency management,

release planning, reuse, etc.)
k E CMP.ct.3

MAA.rfd.7 Interaction between requirements and architecture k E MAA.tm.3,DES.ar
.4,EVO.pro.2

MAA.rfd.8 Relationship of requirements to systems engineering, human-
centered design, etc.

 D CMP.cf.6

MAA.rfd.9 Wicked problems (e.g. ill-structured problems; problems with
many solutions; etc.)

 D PRF.psy.3

MAA.rfd.10 COTS as a constraint D

MAA.er Eliciting requirements 4
MAA.er.1 Elicitation Sources (e.g. stakeholders, domain experts,

operational and organization environments, etc.)
c E PRF.psy.4

MAA.er.2 Elicitation Techniques (e.g. interviews, questionnaires/surveys,
prototypes, use cases, observation, participatory techniques,
etc.)

c E FND.ec.2,MAA.er
.2

MAA.er.3 Advanced techniques (e.g. ethnographic, knowledge elicitation,
etc.)

 O

MAA.rsd Requirements specification & documentation 6
MAA.rsd.1 Requirements documentation basics (e.g. types, audience,

structure, quality, attributes, standards, etc.)
k E PRF.pr.5

MAA.rsd.2 Software requirements specification a E
MAA.rsd.3 Specification languages (e.g. structured English, UML, formal

languages such as Z, VDM, SCR, RSML, etc.)
k E MAA.md.3,CMP.f

m.2

MAA.rv Requirements validation 3
MAA.rv.1 Reviews and inspection a E MAA.rv.1,VAV.re

v
MAA.rv.2 Prototyping to validate requirements (Summative prototyping) k E
MAA.rv.3 Acceptance test design c E VAV.tst.8
MAA.rv.4 Validating product quality attributes c E QUA.cc.5
MAA.rv.5 Formal requirements analysis D MAA.af.1

CCSE Public Draft 3.1 – 2/6/04 31

4.12 Software Design

Description

Software design is concerned with issues, techniques, strategies, representations, and patterns
used to determine how to implement a component or a system. The design will conform to
functional requirements within the constraints imposed by other requirements such as resource,
performance, reliability, and security. This area also includes specification of internal interfaces
among software components, architectural design, data design, user interface design, design
tools, and the evaluation of design.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

DES Software Design 45

DES.con Design concepts 3
DES.con.1 Definition of design c E
DES.con.2 Fundamental design issues (e.g. persistent data, storage

management, exceptions, etc.)
c E CMP.ct.6,VAV.tst

.2,CMP.cf.11
DES.con.3 Context of design within multiple software development life cycles k E
DES.con.4 Design principles (information hiding, cohesion and coupling) a E
DES.con.5 Interactions between design and requirements c E DES.ar.4
DES.con.6 Design for quality attributes (e.g. reliability, usability,

maintainability, performance, testability, fault tolerance, etc.)
k E FND.ef.4,MAA.tm

.4,DES.ar.2,CMP.
ct.14,VAV.fnd.4

DES.con.7 Design trade-offs k E FND.ec.3,DES.ar
.2,DES.ev

DES.con.8 Architectural styles, patterns, reuse c E DES.ar,DES.dd.2
,CMP.ct.3

DES.str Design strategies 6
DES.str.1 Function-oriented design a c E
DES.str.2 Object-oriented design c a E CMP.cf.9,DES.dd

.5,CMP.ct.4
DES.str.3 Data-structure centered design D
DES.str.4 Aspect oriented design O

DES.ar Architectural design 9
DES.ar.1 Architectural styles (e.g. pipe-and-filter, layered, transaction-

centered, peer-to-peer, publish-subscribe, event-based, client-
server, etc.)

a E DES.con.8

DES.ar.2 Architectural trade-offs between various attributes a E FND.ec.3
DES.ar.3 Hardware issues in software architecture k E CMP.ct.13
DES.ar.4 Requirements traceability in architecture k E MAA.af.5,DES.co

n.5,EVO.pro.2
DES.ar.5 Domain-specific architectures and product-lines k E
DES.ar.6 Architectural notations (e.g. architectural structure viewpoints &

representations, component diagrams, etc.)
c E MAA.tm

DES.hci Human computer interface design 12 CMP.cf.7,VAV.hc

t,CMP.ct.2
DES.hci.1 General HCI design principles a E
DES.hci.2 Use of modes, navigation a E
DES.hci.3 Coding techniques and visual design (e.g. color, icons, fonts, c E

CCSE Public Draft 3.1 – 2/6/04 32

etc.)
DES.hci.4 Response time and feedback a E
DES.hci.5 Design modalities (e.g. menu-driven, forms, question-answering,

etc.)
a E

DES.hci.6 Localization and internationalization c E CMP.ct.8
DES.hci.7 Human computer interface design methods c E
DES.hci.8 Multi-media (e.g. I/O techniques, voice, natural language, web-

page, sound, etc.)
 D

DES.hci.9 Metaphors and conceptual models D
DES.hci.10 Psychology of HCI D PRF.psy.2

DES.dd Detailed design 12
DES.dd.1 One selected design method (e.g. SSA/SD, JSD, OOD, etc.) a E
DES.dd.2 Design patterns a E DES.con.8
DES.dd.3 Component design a E CMP.ct.11
DES.dd.4 Component and system interface design a E CMP.ct.2
DES.dd.5 Design notations (e.g. class and object diagrams, UML, state

diagrams, etc.)
c E MAA.tm

DES.ste Design support tools and evaluation 3
DES.ste.1 Design support tools (e.g. architectural, static analysis, dynamic

evaluation, etc.)
a E CMP.ct

DES.ste.2 Measures of design attributes (e.g. coupling, cohesion,
information-hiding, separation of concerns, etc.)

k E

DES.ste.3 Design metrics (e.g. architectural factors, interpretation, metric
sets in common use, etc.)

a E

DES.ste.4 Formal design analysis O MAA.af.2

4.13 Software Verification and Validation

Description

Software verification and validation uses both static and dynamic techniques of system checking
to ensure that the resulting program satisfies its specification and that the program as
implemented meets the expectations of the stakeholders. Static techniques are concerned with
the analysis and checking of system representations throughout all stages of the software life
cycle, while dynamic techniques involve only the implemented system.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

VAV Software Verification and Validation 42

VAV.fnd V&V terminology and foundations 5
VAV.fnd.1 Objectives and constraints of V&V k E
VAV.fnd.2 Planning the V&V effort k E
VAV.fnd.3 Documenting V&V strategy, including tests and other artifacts a E
VAV.fnd.4 Metrics & Measurement (e.g. reliability, usability, performance,

etc.)
k E FND.ef.4,MAA.af.

2,DES.con.6,CM
P.ct.14,PRO.con.
4

VAV.fnd.5 V&V involvement at different points in the lifecycle k E

VAV.rev Reviews 6 MAA.rv.1
VAV.rev.1 Desk checking a E

CCSE Public Draft 3.1 – 2/6/04 33

VAV.rev.2 Walkthroughs a E
VAV.rev.3 Inspections a E VAV.hct.2,3

VAV.tst Testing 21 MAA.rfd.4,DES.c

on.6,CMP.ct.15
VAV.tst.1 Unit testing a E CMP.ct.15,CMP.c

t.3
VAV.tst.2 Exception handling (writing test cases to trigger exception

handling; designing good handling)
a E DES.con.2,CMP.

ct.6
VAV.tst.3 Coverage analysis (e.g. statement, branch, basis path, multi--

condition, dataflow, etc.)
a E

VAV.tst.4 Black-box functional testing techniques a E
VAV.tst.5 Integration Testing c E
VAV.tst.6 Developing test cases based on use cases and/or customer

stories
a E MAA.tm.2

VAV.tst.7 Operational profile-based testing k E
VAV.tst.8 System and acceptance testing a E MAA.rv.4
VAV.tst.9 Testing across quality attributes (e.g. usability, security,

compatibility, accessibility, etc.)
a E MAA.af.3,MAA.rv

.6,VAV.hct,QUA.
cc.5

VAV.tst.10 Regression Testing c E
VAV.tst.11 Testing tools a E CMP.ct.3
VAV.tst.12 Deployment process D

VAV.hct Human computer user interface testing and evaluation 6 DES.hci,VAV.tst.

9
VAV.hct.1 The variety of aspects of usefulness and usability k E MAA.af.3
VAV.hct.2 Heuristic evaluation a E VAV.rev.3
VAV.hct.3 Cognitive walkthroughs c E VAV.rev.3
VAV.hct.4 User testing approaches (observation sessions etc.) a E
VAV.hct.5 Web usability; testing techniques for web sites c E
VAV.hct.6 Formal experiments to test hypotheses about specific HCI

controls
 D FND.ef.1

VAV.par Problem analysis and reporting 4
VAV.par.1 Analyzing failure reports c E
VAV.par.2 Debugging/fault isolation techniques a E
VAV.par.3 Defect analysis k E
VAV.par.4 Problem tracking c E

4.14 Software Evolution

Description

Software evolution is the result of the ongoing need to support the stakeholders' mission in the
face of changing assumptions, problems, requirements, architectures, and technologies.
Evolution is intrinsic to all real-world software systems. Support for evolution requires
numerous activities both before and after each of a succession of versions or upgrades (releases)
that constitute the evolving system. Evolution is a broad concept that expands upon the
traditional notion of software maintenance.

CCSE Public Draft 3.1 – 2/6/04 34

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

EVO Software Evolution 10

EVO.pro Evolution processes 6
EVO.pro.1 Basic concepts of evolution and maintenance k E
EVO.pro.2 Relationship between evolving entities (e.g. assumptions,

requirements, architecture, design, code, etc.)
k E MAA.af.4,DES.ar.

4
EVO.pro.3 Models of software evolution (e.g. theories, laws, etc.) k E
EVO.pro.4 Cost models of evolution D FND.ec.3
EVO.pro.5 Planning for evolution (e.g. outsourcing, in-house, etc.) D MGT.pp

EVO.ac Evolution activities 4 VAV.par.4,MGT.c

m
EVO.ac.1 Working with legacy systems (e.g. use of wrappers, etc.) k E
EVO.ac.2 Program comprehension and reverse engineering k E
EVO.ac.3 System and process re-engineering (technical and business) k E
EVO.ac.4 Impact analysis k E
EVO.ac.5 Migration (technical and business) k E
EVO.ac.6 Refactoring k E
EVO.ac.7 Program transformation D
EVO.ac.8 Data reverse engineering D

4.15 Software Process

Description

 Software process is concerned with knowledge about the description of commonly used
software life-cycle process models and the contents of institutional process standards; definition,
implementation, measurement, management, change and improvement of software processes;
and use of a defined process to perform the technical and managerial activities needed for
software development and maintenance.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

PRO Software Process 13

PRO.con Process concepts 3
PRO.con.1 Themes and terminology k E
PRO.con.2 Software engineering process infrastructure (e.g. personnel,

tools, training, etc.)
k E

PRO.con.3 Modeling and specification of software processes c E MAA.rfd.2
PRO.con.4 Measurement and analysis of software processes c E MGT.ctl.3
PRO.con.5 Software engineering process improvement (individual, team) c E FND.ef.3,PRO.im

p.4,5
PRO.con.6 Quality analysis and control (e.g. defect prevention, review

processes, quality metrics, root cause analysis, etc.)
c E MAA.rv.1,VAV.re

v,QUA.pda.4
PRO.con.7 Analysis and modeling of software process models D

PRO.imp Process implementation 10
PRO.imp.1 Levels of process definition (e.g. organization, project, team,

individual, etc.)
k E

PRO.imp.2 Life cycle models (agile, heavyweight, waterfall, spiral, V-Model, c E DES.con.3,VAV.f

CCSE Public Draft 3.1 – 2/6/04 35

etc.) nd.5
PRO.imp.3 Life cycle process models and standards (e.g., IEEE, ISO, etc.) c E PRF.pr.5,QUA.pr

o.2
PRO.imp.4 Individual software process (model, definition, measurement,

analysis, improvement)
c E PRO.con.5

PRO.imp.5 Team process (model, definition, organization, measurement,
analysis, improvement)

c E PRO.con.5

PRO.imp.6 Process tailoring k E
PRO.imp.7 ISO/IEEE Standard 12207 Software Life Cycle Processes:

requirements of processes
k E PRF.pr.5

4.16 Software Quality

Description

Software quality is a pervasive concept that affects, and is affected by all aspects of software
development, support, revision, and maintenance. It encompasses the quality of work products
developed and/or modified (both intermediate and deliverable work products) and the quality of
the work processes used to develop and/or modify the work products. Quality work product
attributes include functionality, usability, reliability, safety, security, maintainability, portability,
efficiency, performance, and availability.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

QUA Software Quality 16

QUA.cc Software quality concepts and culture 2
QUA.cc.1 Definitions of quality k E
QUA.cc.2 Society's concern for quality k E
QUA.cc.3 The costs and impacts of bad quality k E
QUA.cc.4 A cost of quality model c E MGT.pp.4
QUA.cc.5 Quality attributes for software (e.g. dependability, usability, etc.) k E MAA.rva.5,VAV.t

st.9,QUA.pda.5
QUA.cc.6 The dimensions of quality engineering k E
QUA.cc.7 Roles of people, processes, methods, tools, and technology k E

QUA.std Software quality standards 2 PRF.pr.5
QUA.std.1 The ISO 9000 Quality Management Systems k E
QUA.std.2 ISO/IEEE Standard 12207 Software Life Cycle Processes k E
QUA.std.3 Organizational implementation of standards k E
QUA.std.4 IEEE software quality-related standards D

QUA.pro Software quality processes 4
QUA.pro.1 Software quality models and metrics c E VAV.fnd.4,QUA.p

da.5
QUA.pro.2 Quality-related aspects of software process models k E PRO.imp.3
QUA.pro.3 Introduction/overview of ISO 15504 and the SEI CMMs k E PRF.pr.5
QUA.pro.4 Quality-related process areas of ISO 15504 k E PRF.pr.5
QUA.pro.5 Quality-related process areas of the SW-CMM and the CMMIs k E
QUA.pro.6 The Baldrige Award criteria as applied to software engineering O
QUA.pro.7 Quality aspects of other process models O

QUA.pca Process assurance 4

CCSE Public Draft 3.1 – 2/6/04 36

QUA.pca.1 The nature of process assurance k E
QUA.pca.2 Quality planning a E MGT.pp
QUA.pca.3 Organizing and reporting for process assurance a E
QUA.pda.4 Techniques of process assurance c E

QUA.pda Product assurance 4
QUA.pda.1 The nature of product assurance k E
QUA.pda.2 Distinctions between assurance and V&V k E VAV
QUA.pda.3 Quality product models k E
QUA.pda.4 Root cause analysis and defect prevention c E PRO.con.6
QUA.pda.5 Quality product metrics and measurement c E VAV.fnd.4,QUA.c

c.5,QUA.pro.1
QUA.pda.6 Assessment of product quality attributes (e.g. useability,

reliability, availability, etc.)
c E

4.17 Software Management

Description

Software management is concerned with knowledge about the planning, organization, and
monitoring of all software life-cycle phases. Management is critical to ensure that software
development projects are appropriate to an organization, work in different organizational units is
coordinated, software versions and configurations are maintained, resources are available when
necessary, project work is divided appropriately, communication is facilitated, and progress is
accurately charted.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

MGT Software Management 19

MGT.con Management concepts 2
MGT.con.1 General project management k E
MGT.con.2 Classic management models k E
MGT.con.3 Project management roles k E
MGT.con.4 Enterprise/Organizational management structure k E
MGT.con.5 Software management types (e.g. acquisition, project,

development, maintenance, risk, etc.)
k E FND.ec.4,MGT.p

p.6,EVO

MGT.pp Project planning 6 VAV.fnd.2,QUA.p

ca.2
MGT.pp.1 Evaluation and planning c E
MGT.pp.2 Work breakdown structure a E
MGT.pp.3 Task scheduling a E
MGT.pp.4 Effort estimation a E FND.ec.3,QUA.cc

.4
MGT.pp.5 Resource allocation c E
MGT.pp.6 Risk management a E FND.ec.4

MGT.per Project personnel and organization 2 PRF.com.3
MGT.per.1 Organizational structures, positions, responsibilities, and

authority
k E

MGT.per.2 Formal/informal communication k E
MGT.per.3 Project staffing k E

CCSE Public Draft 3.1 – 2/6/04 37

MGT.per.4 Personnel training, career development, and evaluation k E
MGT.per.5 Meeting management a E
MGT.per.6 Building and motivating teams a E
MGT.per.7 Conflict resolution a E

MGT.ctl Project control 4
MGT.ctl.1 Change control k E MAA.rfd.5,MGT.c

m.1,2
MGT.ctl.2 Monitoring and reporting c E
MGT.ctl.3 Measurement and analysis of results c E PRO.con.4
MGT.ctl.4 Correction and recovery k E
MGT.ctl.5 Reward and discipline O
MGT.ctl.6 Standards of performance O

MGT.cm Software configuration management 5
MGT.cm.1 Revision control a E MGT.ctl.1
MGT.cm.2 Release management c E MGT.ctl.1
MGT.cm.3 Tool support c E
MGT.cm.4 Builds c E
MGT.cm.5 Software configuration management processes k E
MGT.cm.6 Maintenance issues k E EVO.ac
MGT.cm.7 Distribution and backup D

4.18 Systems and Application Specialties

As part of an undergraduate software engineering education, students should specialize in one or
more areas. Within their specialty, students should learn material well beyond the core material
specified above. They may either specialize in one or more of the ten knowledge areas listed
above, or they may specialize in one or more of the application areas listed below. For each
application area, students should obtain breadth in the related domain knowledge while they are
obtaining a depth of knowledge about the design of a particular system. Students should also
learn about the characteristics of typical products in these areas and how these characteristics
influence a system's design and construction. Each application specialty listed below is
elaborated with a list of related topics that are needed to support the application.

This list of application areas is not intended to be exhaustive but is designed to give guidance to
those developing specialty curricula.

Specialties and Their Related Topics
Reference

SAS System and Application Specialties

SAS.net Network-centric systems
SAS.net.1 Knowledge and skills in web-based technology
SAS.net.2 Depth in networking
SAS.net.3 Depth in security

SAS.inf Information systems and data processing
SAS.inf.1 Depth in databases
SAS.inf.2 Depth in business administration

CCSE Public Draft 3.1 – 2/6/04 38

SAS.inf.3 Data warehousing

SAS.fin Financial and e-commerce systems
SAS.fin.1 Accounting
SAS.fin.2 Finance
SAS.fin.3 Depth in security

SAS.sur Fault tolerant and survivable systems
SAS.sur.1 Knowledge and skills with heterogeneous, distributed systems
SAS.sur.2 Depth in security
SAS.sur.3 Failure analysis and recovery
SAS.sur.4 Intrusion detection

SAS.sec Highly secure systems
SAS.sec.1 Business issues related to security
SAS.sec.2 Security weaknesses and risks
SAS.sec.3 Cryptography, cryptanalysis, steganography, etc.
SAS.sec.4 Depth in networks

SAS.sfy Safety critical systems
SAS.sfy.1 Depth in formal methods, proofs of correctness, etc.
SAS.sfy.2 Knowledge of control systems
SAS.sfy.3 Failure modes, effects analysis, and fault tree analysis

SAS.emb Embedded and real-time systems
SAS.emb.1 Hardware for embedded systems
SAS.emb.2 Language and tools for development
SAS.emb.3 Depth in timing issues
SAS.emb.3 Hardware verification

SAS.bio Biomedical systems
SAS.bio.1 Biology and related sciences
SAS.bio.2 Related safety critical systems knowledge

SAS.sci Scientific systems
SAS.sci.1 Depth in related science
SAS.sci.2 Depth in statistics
SAS.sci.3 Visualization and graphics

SAS.tel Telecommunications systems
SAS.tel.1 Depth in signals, information theory, etc.
SAS.tel.2 Telephony and telecommunications protocols

SAS.av Avionics and vehicular systems
SAS.av.1 Mechanical engineering concepts
SAS.av.2 Related safety critical systems knowledge
SAS.av.3 Related embedded and real-time systems knowledge

SAS.ind Industrial process control systems
SAS.ind.1 Control systems
SAS.ind.2 Industrial engineering and other relevant areas of engineering
SAS.ind.3 Related embedded and real-time systems knowledge

CCSE Public Draft 3.1 – 2/6/04 39

SAS.mm Multimedia, game and entertainment systems
SAS.mm.1 Visualization, haptics, and graphics
SAS.mm.2 Depth in human computer interface design
SAS.mm.3 Depth in networks

SAS.mob Systems for small and mobile platforms
SAS.mob.1 Wireless technology
SAS.mob.2 Depth in human computer interfaces for small and mobile platforms
SAS.mob.3 Related embedded and real-time systems knowledge
SAS.mob.4 Related telecommunications systems knowledge

SAS.ab Agent-based systems
SAS.ab.1 Machine learning
SAS.ab.2 Fuzzy logic
SAS.ab.3 Knowledge engineering

CCSE Public Draft 3.1 – 2/6/04 40

Chapter 5: Guidelines for SE Curriculum Design and Delivery

Chapter 4 of this document presents the SEEK, which includes the knowledge that software
engineering graduates need to be taught. However, how the SEEK topics should be taught may
be as important as what is taught. In this chapter, we describe a series of guidelines that should
be considered by those developing an undergraduate SE curriculum, and by those teaching
individual SE courses.

5.1 Guideline Regarding those Developing and Teaching the Curriculum

Curriculum Guideline 1: Curriculum designers and instructors must have sufficient
relevant knowledge and experience and understand the character of software engineering.

Curriculum designers and instructors should have engaged in scholarship in the broad area of
software engineering. This implies:
• Having software engineering knowledge in most areas of SEEK.

• Obtaining real-world experience in software engineering.

• Becoming recognized publicly as knowledgeable in software engineering either by having a
track record of publication, or being active in an appropriate professional society.

• Increasing their exposure to the continually expanding variety of domains of application of
software engineering (such as other branches of engineering, or business applications), while
being careful not to claim to be experts in those domains.

• Possessing the motivation and the wherewithal to keep up-to-date with developments in the
discipline

Failure to adhere to this principle will open a program or course to certain risks:
• A program or course might be biased excessively to one kind of software or class of

methods, thus not giving students a broad enough exposure to the field, or an inaccurate
perception of the field. For example, instructors who have experienced only real-time or only
data processing systems are at risk of flavoring their programs excessively towards the type
of systems they know. While it is not bad to have programs that are specialized towards
specific types of software engineering such as these, these specializations should be
explicitly acknowledged in course titles. Also, in a program as a whole, students should
eventually be exposed to a comprehensive selection of systems and approaches.

• Faculty who have a primarily theoretical computer science background might not adequately
convey to students the engineering-nature of software engineering.

• Faculty from related branches of engineering might deliver a software engineering program
or course without a full appreciation of the computer science fundamentals that underlie so
much of what software engineers do. They might also not cover software for the wide range
of domains beyond engineering to which software engineering can be applied.

• Faculty who have not experienced the development of large systems might not appreciate the
importance of process, quality, evolution, and management (which are knowledge areas of
SEEK).

CCSE Public Draft 3.1 – 2/6/04 41

• Faculty who have made a research career out of pushing the frontiers of software
development might not appreciate that students first need to be taught what they can use in
practice and need to understand both practical and theoretical motivations behind what they
are taught.

5.2 Guidelines for Constructing the Curriculum

Curriculum Guideline 2: Curriculum designers and instructors must think in terms of
outcomes.

Both entire programs and individual courses should include attention to outcomes or learning
objectives. Furthermore, as courses are taught, these outcomes should be regularly kept in mind.
Thinking in terms of outcomes helps ensure that the material included in the curriculum is
relevant and is taught in an appropriate manner and at an appropriate level of depth.

The CCSE graduate outcomes (see Chapter 2) should be used as a basis for designing and
assessing software engineering curricula in general. These can be further specialized for the
design of individual courses.

In addition, particular institutions may develop more specialized outcomes (e.g. particular
abilities in specialized applications areas, or deeper abilities in certain SEEK knowledge areas).

Curriculum Guideline 3: Curriculum designers must strike an appropriate balance
between coverage of material, and flexibility to allow for innovation.

There is a tendency among those involved in curriculum design to fill up a program or course
with extensive lists of things that “absolutely must” be covered, leaving relatively little time for
flexibility, or deeper (but less broad) coverage.

However, there is also a strong body of opinion that students who are given a foundation in the
‘basics’ and an awareness of advanced material should be able to fill in many kinds of ‘gaps’ in
their education later on, perhaps in the workforce, and perhaps on an as-needed basis. This
suggests that certain kinds of advanced process-oriented SEEK material, although marked at an
‘a’ (application) level of coverage, could be covered at a ‘k’ level if absolutely necessary to
allow for various sorts of curriculum innovation. However, material with deeper technical or
mathematical content marked ‘a’ should not be reduced to ‘k’ coverage, since it is tends to be
much harder to learn on the job.

Curriculum Guideline 4: Many SE concepts, principles, and issues should be taught as
recurring themes throughout the curriculum to help students develop a software
engineering mindset.

Material defined in many SEEK units should be taught in a manner that is distributed throughout
many courses in the curriculum. Generally, early courses should introduce the material, with
subsequent courses reinforcing and expanding upon the material. In most cases, there should also
be courses, or parts of courses, that treat the material in depth.

CCSE Public Draft 3.1 – 2/6/04 42

In addition to ethics and tool use, which will be highlighted specifically in other guidelines, the
following are types of material that should be presented, at least in part, as recurring themes:
• Measurement, quantification, and formal or mathematical approaches

• Modeling, representation, and abstraction.

• Human factors and usability: Students need to repeatedly see how software engineering is
not just about technology.

• The fact that many software engineering principles are in fact core engineering principles:
Students may learn SE principles better if they are shown examples of the same principle in
action elsewhere: e.g. the fact that all engineers use models, measure, solve problems, use
‘black boxes’, etc.

• The importance of scale: Students can practice only on relatively small problems, yet they
need to appreciate that the power of many techniques is most obvious in large systems. They
need to be able to practice tasks as if they were working on very large systems, and to
practice reading and understanding large systems.

• The importance of reuse.

• Much of the material in the Process, Quality, Evolution, and Management knowledge areas.

Curriculum Guideline 5: Learning certain software engineering topics requires maturity,
so these topics should be taught towards the end of the curriculum, while other material
should be taught earlier to facilitate gaining that maturity.

It is important to structure the material that has to be taught so that students fully appreciate the
underlying principles and the motivation. Thus if taught too early in the curriculum, many topics
from SEEK’s Process, Quality, Evolution, and Management knowledge areas are likely to be
poorly understood and poorly appreciated by students. This should be taken into account when
designing the sequence in which material is to be taught and how real-world experiences are
introduced to the students. It is suggested that introductory material on these topics can be taught
in early years, but that the bulk of the material be left to the latter part of the curriculum.

On the other hand, students also need very practical material to be taught early so they can begin
to gain maturity by participating in real-world development experiences (in the work force or in
student projects). Examples of topics whose teaching should start early include programming,
human factors, aspects of requirements and design, as well as verification and validation. This
does not mean to imply that programming has to be taught first, as in a traditional CS1 course,
but that at least a reasonable amount should be taught in a student’s first year.

Students should also be exposed to “difficult” software engineering situations relatively early in
their program. Examples of these might be dealing with rapidly changing requirements, having
to understand and change a large existing system, having to work in a large team, etc. The
concept behind such experiences is to raise awareness in students that process, quality, evolution
and management are important things to study, before they start studying them.

CCSE Public Draft 3.1 – 2/6/04 43

Curriculum Guideline 6: Students must learn some application domain (or domains)
outside of software engineering.

Almost all software engineering activity will involve solving problems for customers in domains
outside software engineering. Therefore, somewhere in their curriculum, students should be able
to study one or more outside domains in reasonable depth.

Studying such material will not only give the student direct domain knowledge they can apply to
software engineering problems, but will also teach them the language and thought processes of
the domain, enabling more in-depth study later on.

By ‘in reasonable depth’ we mean one or more courses that are at more than the introductory
level (at least heavy second year courses and beyond). The choices of domain (or domains) is a
local consideration, and in many cases can be at least partly left up to the student. Domains can
include other branches of engineering or the natural sciences; they can also include social
sciences, business and the humanities. No one domain should be considered ‘more important’ to
software engineering programs than another.

The study of certain domains may necessitate additional supporting courses, such as particular
areas of mathematics and computer science as well as deeper areas of software engineering. The
reader should consult the Systems and Application Specialties area at the end of SEEK (Chapter
4) to see recommendations for such supporting courses.

This guideline does not preclude the possibility of designing courses or programs that deeply
integrate the teaching of domain knowledge with the teaching of software engineering. In fact,
such an approach would be innovative and commendable. For example an institution could have
courses called ‘Telecommunications Software Engineering’, ‘Aerospace Software Engineering’,
‘Information Systems Software Engineering’, or ‘Software Engineering of Sound and Music
Systems’. However, in such cases great care must be taken to ensure that the depth is not
sacrificed in either SE or the domain. The risk is that the instructor, the instructional material, or
the presentation may not have adequate depth in one or the other area.

5.3 Attributes and Attitudes that should Pervade the Curriculum and its
Delivery

Curriculum Guideline 7: Software engineering must be taught in ways that emphasize its
engineering nature.

Educators should develop an appreciation of those aspects of software engineering that it shares
in common with other branches of engineering. Engineering has been evolving for millennia, and
a great deal of general wisdom has been built up, although some parts of it need to be adapted to
the software engineering context.

Software engineering programs and courses must therefore embrace the characteristics of
engineering that are presented in Chapter 3.

In addition, software engineering students must truly come to believe that they are real
engineers: They must develop a sense of the engineering ethos, and an understanding of the

CCSE Public Draft 3.1 – 2/6/04 44

responsibilities of being an engineer. This can be achieved only by appropriate attitudes on the
part of all faculty and administrators.

This principle does not require that software engineers must endorse all aspects of the
engineering profession. There are those, within and outside the profession, who criticize some
aspects of the profession, and their views should be respected, with an eye to improving the
profession. Also, there are some ways that software engineering differs from other types of
engineering (e.g. producing a less tangible product, and having roots in different branches of
science), and these must be taken into account. This principle also does not require that a
particular model of the profession be adopted.

Curriculum Guideline 8: Students should be trained in certain personal skills that
transcend the subject matter.

The skills below tend to be required for almost all activities that students will encounter in the
workforce. These skills must be acquired primarily through practice:
• Exercising critical judgment: Making judgments among competing solutions is a key part

of what it means to be an engineer. Curriculum design and delivery should therefore help
students build the knowledge, analysis skills, and methods they need to make sound
judgments. Of particular importance is a willingness to think critically. Students should also
be taught to judge the reliability of various sources of information.

• Evaluating and challenging received wisdom: Students should be trained to not
immediately accept everything they are taught or read. They should also gain an
understanding of the limitations of current SE knowledge, and how SE knowledge seems to
be developing.

• Recognizing their own limitations: Students should be taught that professionals consult
other professionals and that there is great strength in teamwork.

• Communicating effectively: Students should learn to communicate well in all contexts: in
writing, when giving presentations, when demonstrating (their own or others’) software, and
when conducting discussions with others. Students should also build listening skills and
negotiation skills.

There are some SEEK topics relevant to the above which can be taught in lectures, especially
aspects of communication ability; but students will learn these skills most effectively if they are
constantly emphasized though group projects, carefully marked written work, and student
presentations.

Curriculum Guideline 9: Students should be instilled with the ability and eagerness to
learn.

Since so much of what is learned will change over a student’s professional career, and since only
a small fraction of what could be learned will be taught and learned at university, it is of
paramount importance that students develop the habit of continually expanding their knowledge.

Curriculum Guideline 10: Software engineering must be taught as a problem-solving
discipline.

An important goal of most software projects is solving customers’ problems, both explicit and
implicit. It is important to recognize this when designing programs and courses: Such

CCSE Public Draft 3.1 – 2/6/04 45

recognition focuses the learner on the rationale for what he or she is learning, deepens the
understanding of the knowledge learned, and helps ensure that the material taught is relevant.
Unfortunately, a mistake commonly made is to focus on purely technical problems, thus leading
to systems that are not useful.

There are a variety of classes of problems, all of which are important. Some, such as analysis,
design, and testing problems, are product-oriented and are aimed directly at solving the
customers' problem. Others, such as process improvement, are meta-problems – whose solution
will facilitate the product-oriented, problem-solving process. Still others, such as ethical
problems, transcend the above two categories.

Problem solving is best learned through practice, and taught through examples. Having a teacher
show a solution on the screen can go part of the way, but is never sufficient. Students therefore
must be given a significant number of assignments.

Curriculum Guideline 11: The underlying and enduring principles of software engineering
should be emphasized, rather than details of the latest or specific tools.

The SEEK lists many topics that can be taught using a variety of different computer hardware,
software applications, technologies, and processes (which we will refer to collectively as tools).
In a good curriculum, it is the enduring knowledge in the SEEK topics that must be emphasized,
not the details of the tools. The topics are supposed to remain valid for many years; the
knowledge and experience derived from their learning should still be applicable 10 or 20 years
later. Particular tools, on the other hand, will rapidly change. It is a mistake, for example, to
focus excessively on how to use a particular vendor’s piece of software, on the detailed steps of a
methodology, or on the syntax of a programming language.

Applying this guideline to languages requires understanding that the line between what is
enduring and what is temporary can be somewhat hard to pinpoint, and can be a moving target. It
is clear, for example, that software engineers should definitely learn in detail several
programming languages, as well as other types of languages (such as specification languages).
This guideline should be interpreted as saying that when learning such languages, students must
learn much more than just surface syntax, and, having learned the languages, should be able to
learn whatever new languages appear with little difficulty.

Applying this guideline to processes (also known as ‘methods’ or ‘methodologies’) is similar to
applying it to languages. Students ought not to have to memorize long lists of steps, but should
instead learn the underlying wisdom behind the steps such that they can choose whatever
methodologies appear in the future, and can creatively adapt and mix processes.

Applying this guideline to technologies (both hardware and software) means not having to
memorize in detail an API, user interface, or instruction set just for the sake of memorizing it.
Instead, students should develop the skill of looking up details in a reference manual whenever
needed, so that they can concentrate on more important matters.

CCSE Public Draft 3.1 – 2/6/04 46

Curriculum Guideline 12: The curriculum must be taught so that students gain experience
using appropriate and up-to-date tools, even though tool details are not the focus of the
learning.

Performing software engineering efficiently and effectively requires choosing and using the most
appropriate computer hardware, software tools, technologies, and processes (again, collectively
referred to as tools). Students must therefore be habituated to choosing and using tools, so that
they go into the workforce with this habit – a habit that is often hard to pick up in the workforce,
where the pressure to deliver results can often cause people to hesitate to learn new tools.

Appropriateness of tools must be carefully considered. A tool that is too complex, too unreliable,
too expensive, too hard to learn given the available time and resources, or provides too little
benefit, is inappropriate, whether in the educational context or in the work context. Many
software engineering tools have failed because they have failed this criterion.

Tools should be selected that support the process of learning principles.

Tools used in curricula must be reasonably up-to-date for several reasons: a) so that students can
take the tools into the workplace as ‘ambassadors’– performing a form of technology transfer; b)
so that students can take advantage of the tool skills they have learned; c) so that students and
employers will not feel the education is out of-date, even if up-to-date principles are being
taught. Having said that, older tools can sometimes be simpler, and therefore more appropriate
for certain needs.

This guideline may seem in conflict with Curriculum Guideline 11, but that conflict is illusory.
The key to avoiding the conflict is recognizing that teaching the use of tools does not mean that
the object of the teaching is the tools themselves. Learning to use tools should be a secondary
activity performed in laboratory or tutorial sessions, or by the student on his or her own. Students
should realize that the tools are only aids, and they should learn not to fear learning new tools.

Curriculum Guideline 13: Material taught in a software engineering program should,
where possible, be grounded in sound research and mathematical or scientific theory, or
else widely accepted good practice.

There must be evidence that whatever is taught is indeed true and useful. This evidence can take
the form of validated scientific or mathematical theory (such as in many areas of computer
science), or else widely used and generally accepted best practice.

It is important, however, not to be overly dogmatic about the application of theory: It may not
always be appropriate. For example, formalizing a specification or design, so as to be able to
apply mathematical approaches, can be inefficient and reduce agility in many situations. In other
circumstances, however, it may be essential.

In situations where material taught is based on generally accepted practice that has not yet been
scientifically validated, the fact that the material is still open to question should be made clear.

When teaching “good practices”, they should not be presented in a context-free manner, but by
using examples of the success of the practices, and of failure caused by not following them. The
same should be true when presenting knowledge derived from research.

CCSE Public Draft 3.1 – 2/6/04 47

This guideline complements Curriculum Guideline 11. Whereas curriculum Guideline 11
stresses focus on fundamental software engineering principles, Curriculum Guideline 13 says
that what is taught should be well founded.

Curriculum Guideline 14: The curriculum should have a significant real-world basis.

Incorporating real-world elements into the curriculum is necessary to enable effective learning of
software engineering skills and concepts A program should be set up to incorporate at least
some of the following:
• Case studies: Exposure to real systems and project case studies, taught to critique these as

well as to reuse the best parts of them.

• Project-based classes: Some courses should be set up to mimic typical projects in industry.
These should include group-work, presentations, formal reviews, quality assurance, etc. It
can be beneficial if such a course were to include a real-world customer or customers. Group
projects can be interdisciplinary. Students should also be able to experience the different
roles typical in a software engineering team: project manager, tools engineer, requirements
engineer, etc.

• Capstone course(s): Students need a significant project, preferably spanning their entire last
year, in order to practice the knowledge and skills they have learned. Unlike project-based
classes, the capstone project is managed by the students and solves a problem of the student’s
choice. Discussion of a capstone course in the curriculum can be found in Section 6.3.2. In
some locales group capstone projects are the norm, whereas in others individual capstone
projects are required.

• Practical exercises: Students should be given practical exercises, so that they can develop
skills in current practices and processes.

• Student work experience: Where possible, students should have some form of industrial
work experience as a part of their program. This could take the form of one or more
internships, co-op work terms, or sandwich work terms (the terminology used here is clearly
country-dependent). It is desirable, although not always possible, to make work experience
compulsory. If opportunities for work experience are difficult to provide, then simulation of
work experience must be achieved in courses.

Despite the above, instructors should keep in mind that the level of real-world exposure their
students can achieve as an undergraduate will be limited: students will generally come to
appreciate the extreme complexity and the true consequences of poor work only by bitter
experience as they work on various projects in their careers. Educators can only start the process
of helping students develop a mature understanding of the real world; and educators must realize
that it will be a difficult challenge to enable students to appreciate everything they are taught.

Curriculum Guideline 15: Ethical, legal, and economic concerns, and the notion of what it
means to be a professional, should be raised frequently.

One of the key reasons for the existence of a defined profession is to ensure that its members
follow ethical and professional principles. By taking opportunities to discuss these issues
throughout the curriculum, they will be come deeply entrenched. One aspect of this is exposing
students to standards and guidelines. See Section 3.3 for further discussion of professionalism.

CCSE Public Draft 3.1 – 2/6/04 48

5.4 General Strategies for Software Engineering Pedagogy

Curriculum Guideline 16: In order to ensure that students embrace certain important
ideas, care must be taken to motivate students by using interesting, concrete and
convincing examples.

It may be only through bitter experience that software engineers learn certain concepts and
techniques considered central to the discipline. In some cases, the educational community has
not appreciated the value of such concepts and has therefore not taught them. In other cases
educators have encountered skepticism on the part of students.

In these cases, there is a need to put considerable attention into motivating students to accept the
ideas, by using interesting, concrete, and revealing examples. The examples should be of
sufficient size and complexity so as to demonstrate that using the material being taught has
obvious benefits, and that failure to use the material would lead to undesirable consequences.

The following are examples of areas where motivation is particularly needed:
• Mathematical foundations: Logic and discrete mathematics should be taught in the context of

its application to software engineering or computer science problems. If derivations and
proofs are to be presented, these should preferably be taught following motivation of why the
result is important. Statistics and empirical methods should likewise be taught in an applied,
rather than abstract, manner.

• Process and quality: Students must be made aware of the consequences of poor processes and
bad quality. They must also be exposed to good processes and quality, so that they can
experience for themselves the effect of improvements, feel pride in their work, and learn to
appreciate good work.

• Human factors and usability: Students will often not appreciate the need for attention to these
areas unless they actually experience usability difficulties, or watch users having difficulty
using software.

Curriculum Guideline 17: Software engineering education in the 21st century needs to
move beyond the lecture format: It is therefore important to encourage consideration of a
variety of teaching and learning approaches.

The most common approach to teaching software engineering material is the use of lectures,
supplemented by laboratory sessions, tutorials, etc. However, alternative approaches can help
students learn more effectively. Some of the approaches that might be considered to supplement
or even largely replace the lecture format in certain cases, include:
• Problem-based learning: This has been found to be particularly useful in other professional

disciplines, and is now used to teach engineering in some institutions. See Curriculum
Guideline 10 for a discussion of the problem-solving nature of the discipline.

• Just-in-time learning: Teaching fundamental material immediately before teaching the
application of that material. For example, teaching aspects of mathematics the day before
they are applied in a software engineering context. There is evidence that this helps students
retain the fundamental material, although it can be difficult to accomplish since faculty must
co-ordinate across courses.

CCSE Public Draft 3.1 – 2/6/04 49

• Learning by failure: Students are given a task that they will have difficulty with. They are
then taught methods that would enable them in future to do the task more easily.

• Self-study materials that students work through on their own schedule.

Curriculum Guideline 18: Important efficiencies and synergies can be achieved by
designing curricula so that several types of knowledge are learned at the same time.

Many people browsing through the SEEK have commented that there is a very large amount of
material to be taught, or contrarily, that many topics are assigned a rather small number of hours.
However, if careful attention is paid to the curriculum, many topics can be taught concurrently;
in fact two topics listed as requiring x and y hours respectively may be taught together in less
than x+y hours.

The following are some of the many situations where such synergistic teaching and learning may
be applied:

• Modeling, languages, and notations: Considerable depth in languages such as UML can be

achieved by merely using the notation when teaching other concepts. The same applies to
formal methods and programming. Clearly there will need to be some time set aside to teach
the basics of a language or modeling technique per se, but both broad and deep knowledge
can be learned as students study a wide range of other topics.

• Process, quality, and management: Students can be instructed to follow certain processes as
they are working on exercises or projects whose explicit objective is to learn other concepts.
In these circumstances, it would be desirable for students to have had some introduction to
process, so that they know why they are being asked to follow a process. Also, it might be
desirable to follow the exercise or project with a discussion of the usefulness of applying the
particular process. The depth of learning of the process is likely to be considerable, with
relatively little time being taken away from the other material being taught.

• Mathematics: Students might deepen and expand their understanding of statistics while
analyzing some data resulting from studies of reliability or performance. Opportunities to
deepen understanding of logic and other branches of discrete mathematics also abound.

Teaching multiple concepts at the same time in this manner can, in fact, help students appreciate
linkages among topics, and can make material more interesting to them. In both cases, this
should lead to better retention of material.

5.5 Concluding Comment

The above represents a set of key guidelines that need to underpin the development of a high-
quality software engineering program. These are not necessarily the only concerns. For each
institution, there are likely to be local and national needs driven by industry, government, etc.
The aspirations of the students themselves also need to be considered. Students must see value in
the education, and they must see it meeting their needs; often this is conditioned by their
achievements (e.g. what they have been able to build) during their program and by their career
aspirations and options. Certainly, they should feel confident about being able to compete
internationally, within the global workforce.

CCSE Public Draft 3.1 – 2/6/04 50

Any software engineering curriculum or syllabus needs to integrate all these various
considerations into a single, coherent program. Ideally, a uniform and consistent ethos should
permeate individual classes and the environment in which the program is delivered. A software
engineering program should instill in the student a set of expectations and values associated with
engineering high-quality software systems.

CCSE Public Draft 3.1 – 2/6/04 51

Chapter 6: Courses and Course Sequences
In this chapter we present a set of example curricula that can be used to teach the knowledge
described in the SEEK (Chapter 4) according to the guidelines described in Chapter 5.

This section is organized as follows. In Section 6.1, we describe how we have categorized
courses and the coding scheme we use. In the subsequent sections, we discuss patterns for
introductory courses, intermediate software engineering courses, and other courses, respectively.
Details of the courses, including mappings to SEEK, are left to Appendix A.

This document is intended as a resource for institutions that are developing or improving
programs in software engineering at the undergraduate level, as well as for accreditation
agencies that need sample curricula to help them make decisions about various institutions’
programs. The patterns and course descriptions that follow describe reasonable approaches to
designing and delivering programs and courses, but are not intended to be prescriptive nor
exhaustive. We do suggest, however, that institutions strongly consider using this chapter as a
basis for curriculum design, since similarity among institutions will benefit at least three groups:
1) students who wish to transfer, 2) employers who wish to understand what students know, and
3) the creators of educational materials such as textbook authors.

Even if an institution decides to base their curriculum on those presented here, it should still
consider its own local needs, and adapt the curriculum as needed. Local issues that will vary
from institution to institution include 1) the preparation of the entering students, 2) the
availability and expertise of faculty at the institution, 3) the overall culture and goals of the
institution, and 4) any additional material that the institution wants its students to learn.
Developing a comprehensive set of desired student outcomes for a program (see Chapter 2)
should be the starting point.

Relationship to CCCS

The CC2001 Computer Science volume (CCCS) [ACM 2001] contains a set of recommendations
for undergraduate programs in Computer Science. While undergraduate degrees in Software
Engineering are different from degrees in Computer Science, the two have a much in common,
particularly at the introductory levels. We will refer to descriptions developed in CCCS when
appropriate, and show how some of them can be adopted directly. This will be important for
many institutions that offer both computer science and software engineering degrees.

How this section was developed

To develop these curricula, a subcommittee of volunteers created a first draft. Numerous
iterations then followed, with changes largely made by steering committee members as a result
of input from various workshops. The original committee members started with SEEK, CCCS,
and a survey of 32 existing bachelors degree programs from North America, Europe and
Australia. A key technique to develop curricula was to determine which SEEK topics can be
covered by reusing CCCS courses. A key subsequent step was to work out ways to distribute the
remaining SEEK material into cohesive software engineering courses, using the existing
programs as a guide. It should be noted that many of the existing bachelors degree programs do
not, in fact, cover SEEK entirely, so the proposals did not originally, exactly match any program.

CCSE Public Draft 3.1 – 2/6/04 52

Since the first draft of this document, at least one university implemented many of the courses in
this document; feedback from that exercise was used to refine the courses shown here.

6.1 Course Coding Scheme

In this document we have used a coding scheme for courses as follows:

XXnnn

Where:
XX is one of

 CS – for courses taken from CCCS
 SE – for software engineering courses defined in this document

 NT – for non-technical courses defined in this document
MA – for a mathematics course defined in this document

nnn is an identifying number, where:
• the first digit indicates the earliest year in a four-year period at which the course

would typically be taken
• the second digit divides the courses into broad subcategories within SE

 0 means the course is broad, covering many areas of SEEK
 1 means the course has a heavy weight in design and computing fundamentals
that are the basis for design

 2 means the course has a heavy weight in process-oriented material
• the third digit distinguishes among courses that would otherwise have the same

number

Except where specified, all courses are “40-hour” standard courses, in the North-American
model. As discussed earlier, this does not mean that there has to be 40 hours of lecturing, but that
the amount of material covered would be equivalent to a traditional course that has 40 hours of
lectures, plus double that time composed of self-study, labs, tutorials, exams, etc.

We will also color-code courses according to the following categories.

The first three colors are used to indicate courses that would typically be taught early and
represent essential introductory material. Specific courses and sequences of these are discussed
in the next section.

SE+CS introductory courses - first year start

introductory computer science courses from CCCS

Mathematics fundamentals courses

The second group of courses primarily cover core software engineering material from SEEK.
These are discussed in Section 6.3

CCSE Public Draft 3.1 – 2/6/04 53

Software engineering core courses

Capstone project course

The next group of courses cover material that is essential in the curriculum; but, the group is
neither introductory nor core software engineering material. Such courses are discussed in
Section 6.4

Intermediate fundamental computer science courses

Non-technical compulsory courses

The following pastel colors are used to indicate course categories that will be elective and
optional in at least some institutions, while perhaps required in others. These are also discussed
in Section 6.4.

Mathematics courses that are not SE core

Technical (SE/CS/IT/CE) courses that are not SE core

Science/engineering courses covering non-SEEK topics

General non-technical courses

Unconstrained

The last category is used when course slots are specified, yet no specific course is specified for
the slot.

6.2 Introductory Sequences Covering Software Engineering, Computer
Science and Mathematics Material

There are several approaches to introducing software engineering to students in the first year-
and-a-half of a bachelors degree program. In this section, we briefly describe the sequences and
the courses they include. We initially describe sequences that teach introductory computing
material, and then we discuss sequences for teaching mathematics. Full details of new courses,
including a formal calendar description, prerequisites, learning objectives, teaching modules,
mapping to SEEK, and other material, is found in Appendix A. Appendix A also has a mapping
to SEEK of courses borrowed from the CCCS volume.

The distinguishing feature of the two main computing sequences is whether students start with
courses that immediately introduce software engineering concepts, or whether they instead start
with a pure computer science first year and are only introduced to software engineering in a

CCSE Public Draft 3.1 – 2/6/04 54

serious way in second year. There is no clear evidence regarding which of these approaches is
best. The CS-first approach is by far the more common, and, for solid pragmatic reasons, seems
likely to remain so. However, the SE-first approach is suggested by some as a way to ensure
students develop a proper sense of what software engineering is all about. The following are
some of the perceived advantages and disadvantages of the two approaches:

Arguments for the SE-first approach:
• Students are taught from the start to think as a software engineer, to focus on the problem to

be solved, to consider requirements and design before coding, to think about process, to work
iteratively, and to adopt other software engineering practices. In other words, they are taught
good habits right from the start.

• Students are less likely to develop the bad habit of thinking primarily in terms of code, or of
code as the objective as opposed to a means to an end. It is felt by some that this mindset is
hard to break later, and leads to students being skeptical of many of the tenets of software
engineering. A good CS-first approach can still avoid this, but some people feel that an SE-
first approach is likely to more readily avoid it.

Arguments for a CS-first approach
• Programming is a fundamental skill required by all software engineers; it is also a skill that

takes much practice to become good at. The more and earlier students practice programming
the better they are likely to become. Some would disagree with the importance of
programming to a software engineer, but the consensus among those developing this
document is that it is an essential skill.

• Students who know little about computers or programming may not be able to grasp SE
concepts in first year, or would find that those concepts have little meaning for them.

• There are many textbooks for standard first-year CS courses, and few that take a truly SE-first
approach. Teaching in an SE-first manner might therefore require instructors to produce much
of their own material.

• Since many institutions offer both SE and CS degrees, they will want to share courses to
reduce resource requirements.

• There is a shortage of SE faculty in many institutions. Those SE faculty who are available are
needed to teach the more advanced courses. Diverting them to teach first year can reduce the
quality of later SE courses.

• Most employment open to students after their first year will involve programming. Employers
will be reluctant to give students responsibilities for design or requirements until they have
matured further. Thus, development of programming skills should be emphasized in the first
year.

There is clearly some wisdom in both approaches, and little convincing evidence that either is as
‘bad’ or as ‘good’ as some people might claim. In order to strike some middle ground, the
courses in both sequences do indeed have some material from the ‘other side’. The core CCCS
first-year courses have a certain amount of SE coverage, while the first-year courses we propose
for the SE-first approach do also teach the fundamentals of implementation, although not as
deeply as the CS courses.

It is intended that by the time students reach the end of either introductory sequence, they will
have covered the same topics.

CCSE Public Draft 3.1 – 2/6/04 55

6.2.1 Introductory Computing Sequence A: Start software engineering in first year.

In this sequence, a student’s first year involves two courses, SE101 and SE102 (described later)
that introduce software engineering in conjunction with some programming and other computer
science concepts. These courses differ from traditional introductory computer science courses in
two ways: (1) Because of the inclusion of a more in-depth introduction to software engineering,
less time is spent on developing programming skills; and (2) The engineering perspective plays a
major role in the course. Thus, the impact of a few extra hours formally devoted to software
engineering is multiplied through an emphasis on using a software engineering approach in all
programming assignments.

In second year, students then take courses CS103 and SE200, which prepare students for the
intermediate sequences discussed in Section 6.3. CS103 and SE200 combine to finish the
development of basic computing knowledge and programming skills in the students in the
program. SE200 contains some of the programming-oriented material normally found in
introductory computing courses but not included in SE101 and SE102. CS103 and SE200 can be
taken concurrently or either one before the other. For scheduling purposes, it will often be best of
they are taken at the same time.

SE101 → SE102 → CS103
 SE200

The following are brief descriptions for the above courses.

SE101 Introduction to Software Engineering and Computing

A first course in software engineering and computing for the software engineering
student who has taken no prior computer science at the university level. Introduces
fundamental programming concepts as well as basic concepts of software engineering.

SE102 Software Engineering and Computing II

A second course in software engineering, delving deeper into software engineering
concepts, while continuing to introduce computer science fundamentals.

SE200 Software Engineering and Computing III

Continues a broad introduction to software engineering and computing concepts.

CS103 Data Structures and Algorithms

Any variant of CS 103 from the CCCS can be used (e.g., those from the imperative-
first or objects-first sequences). Normally, this course has CS102 as a prerequisite; in
this sequence, SE102 is the prerequisite. The description from the CCCS volume is:

Builds on the foundation provided by the CS101I-102I sequence to introduce the

CCSE Public Draft 3.1 – 2/6/04 56

fundamental concepts of data structures and the algorithms that proceed from
them. Topics include recursion, the underlying philosophy of object-oriented
programming, fundamental data structures (including stacks, queues, linked lists,
hash tables, trees, and graphs), the basics of algorithmic analysis, and an
introduction to the principles of language translation.

6.2.2 Introductory Computing Sequence B: Introduction to software engineering in
second year

In this sequence, a student starts with one of the initial sequences of computer science courses
specified in the CCCS volume for CS degrees. Specialization in software engineering starts in
second year with SE201, which can be taken at the same time as the third CS course.

CS101 → CS102 → CS103
 SE201

The CCCS volume offers several variants of the CS introductory courses. Any of these can be
used, although the imperative-first (subscript I), and objects-first (subscript O) seem the best as
foundations for software engineering. CS103 was described in the last subsection; the
imperative-first versions of the first two CS courses, along with SE201-int are briefly described
below and in Appendix A. Note that CS101 and CS102 cover mostly computing fundamentals
topics from SEEK, but also cover small amounts of software engineering material from other
SEEK knowledge areas. Even with the inclusion of the basics of software engineering, it is not
expected that software engineering practices will be strongly emphasized in the programming
assignments.

The CCCS volume also allows for a ‘compressed’ introduction to computer science, in which
CS101, CS102, and CS103 are taught instead as a 2-course sequence CS111 and CS112. If such
courses are used in software engineering degrees, coverage of SEEK will be insufficient unless
either students are admitted with some CS background or extra CS coverage is added to other
courses.

CS101I Programming Fundamentals

This is a standard introduction to computer science, using an imperative-first
approach. The description from the CCCS volume is:

Introduces the fundamental concepts of procedural programming. Topics include
data types, control structures, functions, arrays, files, and the mechanics of
running, testing, and debugging. The course also offers an introduction to the
historical and social context of computing and an overview of computer science as
a discipline.

CCSE Public Draft 3.1 – 2/6/04 57

CS102I The Object-Oriented Paradigm

This is the second in a standard sequence of introductory CS courses. The description
from the CCCS volume is:

Introduces the concepts of object-oriented programming to students with a
background in the procedural paradigm. The course begins with a review of
control structures and data types with emphasis on structured data types and
array processing. It then moves on to introduce the object-oriented programming
paradigm, focusing on the definition and use of classes along with the
fundamentals of object-oriented design. Other topics include an overview of
programming language principles, simple analysis of algorithms, basic
searching and sorting techniques, and an introduction to software engineering
issues.

SE201 Introduction to Software Engineering

This is a central course, presenting the basic principles and concepts of software
engineering and giving a firm foundation for many other courses described below. It
gives broad coverage of the most important terminology and concepts in software
engineering. Upon completing this course, students will be able to do basic modeling
and design, particularly using UML. They will also have a basic understanding of
requirements, software architecture, and testing.

6.2.3 Introductory Mathematics Sequences

Discrete mathematics is the mathematics underlying all computing, including software
engineering. It has the importance to software engineering that calculus has to other branches of
engineering. Statistics and empirical methods also are of key importance to software
engineering.

The mathematics fundamentals courses cover SEEK’s FND.mf topic and some of FND.ef – that
is, discrete mathematics plus probability, statistics, and empirical methods. We have reused
CCCS courses CS105 and CS106. Since the CS volume lacks an appropriate course that covers
certain SEEK material, we have created a new course MA271 to cover statistics and empirical
methods.

It is recommended that these courses be taught starting in first year, although that is not strictly
necessary. This material is needed for some, but not all, of the intermediate software engineering
courses discussed in the next section.

CS105 → CS106
 MA271

CCSE Public Draft 3.1 – 2/6/04 58

CS105 Discrete Structures I

Standard first course in discrete mathematics. Taught in a way that shows how the
material can be applied to software and hardware design. The description from the
CS volume is as follows:

Introduces the foundations of discrete mathematics as they apply to computer
science, focusing on providing a solid theoretical foundation for further work.
Topics include functions, relations, sets, simple proof techniques, Boolean
algebra, propositional logic, digital logic, elementary number theory, and the
fundamentals of counting.

CS106 Discrete Structures II

Standard second course in discrete mathematics. The description from the CS
volume is as follows:

Continues the discussion of discrete mathematics introduced in CS105. Topics in
the second course include predicate logic, recurrence relations, graphs, trees,
matrices, computational complexity, elementary computability, and discrete
probability.

MA271 Statistics and Empirical Methods

Applied probability and statistics in the context of computing. Experiment design
and the analysis of results. The course is taught using examples from software
engineering and other computing disciplines.

6.3 Core Software Engineering Sequences

In this section, we present two sequences, each containing six intermediate software engineering
courses. We also present the capstone course. Full details of new courses, including a formal
calendar description, prerequisites, learning objectives, teaching modules, mapping to SEEK,
and other material, is found in Appendix A.

None of the courses in these sequences are fully specified (i.e., none have all of the 40 hours
allocated to topics). This allows institutions and instructors to be flexible as they adapt the
courses to their needs.

Both six-course sequences have either SE201-int or SE 200 as prerequisites, and would normally
be started in second year. The sequences cover much of the core SE material in SEEK. Each
groups the material in a slightly different way, but ultimately results in the same knowledge
being taught. Also, both sequences contain SE212.

In both sequences, the courses are labeled (A), (B) … (F). These letters are used in the course
patterns discussed in section 6.5; they indicate the slots into which the courses can be placed.

CCSE Public Draft 3.1 – 2/6/04 59

Indentation from the left margin means that a course should not be taken too early in the
curriculum since it requires maturity, but that there is no explicit prerequisite preventing it from
being taken early.

CCSE Public Draft 3.1 – 2/6/04 60

6.3.1 Core Software Engineering Package I

SE211 (A) → SE311 (D)

SE212 (B)

 SE321 (C) →
 SE322 (E) →

SE323 (F)

The following are titles and brief summaries of the courses in this package.

SE211 Software Construction

Covers low-level design issues, including formal approaches.

SE212 Software Engineering Approach to Human Computer Interaction

Covers a wide variety of topics relating to designing and evaluating user interfaces, as
well as some of the psychological background needed to understand people. This
course is also found in Core Software Engineering Package II.

SE311 Software Design and Architecture

Advanced software design, particularly aspects relating to distributed systems and
software architecture.

SE321 Software Quality Assurance

Broad coverage of software quality and testing.

SE322 Software Requirements Analysis

Broad coverage of software requirements, applied to a variety of types of software.

SE323 Software Project Management

In-depth course about project management. It is assumed that by the time students take
this course, they will have a broad and deep understanding of other aspects of software
engineering.

CCSE Public Draft 3.1 – 2/6/04 61

6.3.2 Core Software Engineering Package II

SE213 (A) → SE312 (D) → SE313 (F)

SE212 (B)

SE221 (C)

 SE324 (E)

Note that SE212-hci has already been discussed in the context of Package 1. The main
differences between this package and Package I are as follows:
• This package groups all of the formal methods material in to a single course: SE313,

introducing this material later in the program than Package I does.

• The process, management and quality material is packaged in different combinations.

• The design material is treated in a more top-down manner, starting with architectures first.

SE213 Design and Architecture of Large Software Systems

Modeling and design of large-scale, evolvable systems; managing and planning the
development of such systems – including the discussion of configuration management
and software architecture.

SE221 Software Testing

In-depth course on all aspects of testing, as well as other aspects of verification and
validation, including specifying testable requirements, reviews, and product assurance.

SE312 Low-Level Design of Software

Techniques for low-level design and construction, including formal approaches.
Detailed design for evolvability.

SE324 Software Process and Management

Software processes in general; requirements processes and management; evolution
processes; quality processes; project personnel management; project planning.

SE313 Formal Methods in Software Engineering

Approaches to software design and construction that employ mathematics to achieve
higher levels of quality. Mathematical foundations of formal methods; formal
modeling; validation of formal models; formal design analysis; program
transformations.

6.3.3 Software Engineering Capstone Project

CCSE Public Draft 3.1 – 2/6/04 62

As has been discussed in the guidelines presented in the last chapter, a capstone project course is
essential in a software engineering degree program. The capstone course provides students with
the opportunity to undertake a significant software engineering project, in which they will
deepen their knowledge of many SEEK areas. It should cover a full-year (i.e. 80 lecture-
equivalent-hours). It covers a few hours of a variety of SEEK topics, since it is expected that
students will learn some material on their own during this course, and will deepen their
knowledge in several areas to the ‘a’ level of Bloom’s taxonomy.

SE400

SE400 Software Engineering Capstone Project

Provides students, working in groups, with a significant project experience in which
they can integrate much of the material they have learned in their program, including
matters relating to requirements, design, human factors, professionalism, and project
management.

6.4 Completing the Curriculum: Additional Courses

The introductory and core SE courses discussed in the last two sections cover much of the
required material, but there are still several categories of courses remaining to discuss. Full
details of new courses, including a formal calendar description, prerequisites, learning
objectives, teaching modules, mapping to SEEK, and other material, is found in Appendix A.
Appendix A also has a mapping to SEEK of courses borrowed from the CCCS volume.

6.4.1 Courses covering the remaining compulsory material

Intermediate fundamental computer science courses

The intermediate fundamental computer science courses are CCCS courses in the 200 series, and
cover much of the remaining CMP.cf topics. Any curriculum covering SEEK will need at least
two of these; the patterns in the next section all have three selected courses, but that illustrates
only one possible approach. Some curricula, not shown here, may want to spread the
intermediate SEEK CMP.cf material out over more than three courses.

Non-technical compulsory courses

The non-technical compulsory courses primarily cover the FND.ec topic and the PRF area of
SEEK – that is, engineering economics, communication, and professionalism. Although it would
be possible to compress the necessary SEEK material into a single course, we have shown the
material spread over three courses so it can be covered in more depth.

CCSE Public Draft 3.1 – 2/6/04 63

NT272 Engineering Economics

This is a standard engineering economics course as taught in many universities. A
relatively small fraction of this course is actually required by SEEK, but it would be
desirable for software engineering students to learn more than that minimum.

NT181 Group Dynamics and Communication

Communication and writing skills are highly regarded in the software industry, but
they are also fundamental to success in collegiate careers.

NT291 Professional Software Engineering Practice

Professional Practice is concerned with the knowledge, skills, and attitudes that
software engineers must possess to practice software engineering in a professional,
responsible, and ethical manner. A suitable alternative course would be CS280 from
the CCCS volume.

6.4.2 Non-SEEK courses

Certain curriculum slots in the patterns described below cover material outside of the scope of
SEEK. We have included these to assist curriculum designers in developing programs that cover
more than just SEEK. A certain number of such courses are essential for any interesting and
well-rounded SE program. Curriculum designers and/or students have the flexibility to make
their own choices based on their institutional or personal needs, or based on the needs of
accreditation agencies that look for a broader engineering, science, or humanities background.

In the curriculum patterns, courses in these categories are shown in italics with light background
colors.

Mathematics courses that are not SE core

These cover two types of mathematics courses: a) material such as calculus that is not essential
for a software engineering program according to SEEK, but is nonetheless required in many
curricula for various reasons; b) elective mathematics courses. We show sample course
sequences containing such courses.

Most universities, especially in North America, will teach calculus, often in first year. SEEK
does not contain calculus, because it is not used by software engineers except when doing
domain-specific work (e.g., for other engineers, for scientists, and for certain optimization tasks)
and hence is not essential for all software engineering programs. However, there are a number of
reasons why most programs will include calculus: 1) It is believed to help encourage abstract
thinking and mathematical thinking in general; 2) Many statistics courses have a calculus
prerequisite; and 3) Although needed in the workplace by only a small percentage of software
engineers, it is just not readily learned in the workplace.

Other mathematics areas commonly found in SE curricula are linear algebra and differential
equations.

CCSE Public Draft 3.1 – 2/6/04 64

See section 6.2.3 for Math courses (discrete math and statistics) that are part of the SE core.

Technical (SE/CS/IT/CE) courses that are not SE core

These courses, cover technical material beyond the scope of the essential SEEK topics. Such
courses could be compulsory in a particular program or electives chosen by students. They might
cover topics in SEEK in greater depth than SEEK specifies, or else might cover material not
listed in SEEK at all. This chapter does not give detailed specifications of such courses, but slots
are shown in the course patterns. The reader can consult the Computer Science, Information
Systems ,or Computer Engineering volumes for examples.

Science/engineering courses covering non-SEEK topics

These cover material such as physics, chemistry, electrical engineering, etc. Most software
engineering programs, especially in North America, will include some such courses, particularly
physics courses.

The rationale for including science courses is that they give students experience with the
scientific method and experimentation. Similarly, taking other engineering courses expands
students’ appreciation for engineering in general. Taking some science and engineering courses
will also help students who later on want to develop software in those domains.

Courses in this category are not specified in this document in detail.

General non-technical courses

These slots are for courses in business, social sciences, humanities, arts etc. Most programs will
make some such courses compulsory, particularly in the US, where there is a tradition of
requiring some ‘liberal arts’. Some universities will want to incorporate specific streams of non-
technical courses (e.g., a stream of business courses).

6.5 Curriculum Patterns

In this section we present some example patterns showing how the courses described in the last
three sections can be arranged into a degree program along with additional non-core courses.

All of the patterns should be seen as examples; they are not intended to be prescriptive (unlike
SEEK). They illustrate approaches to packaging SEEK topics in various contexts.

The main features that differentiate the patterns are:
• The international context

• The computer science or engineering school context

• Whether software engineering is to be taught starting in the first year or second year

• Whether there are two semesters per academic year or three quarters

CCSE Public Draft 3.1 – 2/6/04 65

Pattern SE - Recommended General Structure

Year 1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
Intro Computing Sequence CS CS CS SE400 SE400
CS105 CS106 Calc 1 Calc 2 MA271 SE SE Tech elective
NT SE200/201 SE SE SE Tech elective Tech elective
 NT SE NT Tech elective

The remainder of the chapter is devoted to illustrating specific instances of applying Pattern SE
in varying contexts.

Pattern N2S-1 - North American Year-2-Start with Semesters

This pattern illustrates one way that courses can be arranged that should be widely adaptable to
the needs of many North American universities operating on a semester system. Many course
slots are left undefined to allow for adaptation. Two example adaptations are shown later.

The pattern starts its technical content with CS101, CS102, and CS103 The pattern also has
SE201 taken in parallel with CS103 (see above for discussion of this sequence); SE101, SE102,
CS103, SE200 sequence could be substituted.

Following the introductory course SE201 (or SE200), students would take one of the packages of
six SE courses described above that cover specific areas in depth.

There is considerable flexibility in the intermediate fundamental CS courses; a set of CCCS
courses that cover appropriate areas of SEEK is suggested.

We have included three non-technical courses to cover relevant areas of SEEK. We suggest
starting with a communications course (e.g., NT181) very early, and deferring the ethics course
(e.g., NT291), as shown, until students gain more maturity. Many variations are, however,
possible, including rolling the SEEK material in these courses into one or two courses instead of
three.

We have shown the traditional Calculus 1 and Calculus 2 in first year, with the software
engineering mathematics starting in second term of first year. From a pedagogical point of view,
it could be argued that calculus should being delayed; however, teaching calculus in first year
allows SE programs to mesh with existing CS and SE programs; it also ensures that SE students
take calculus in classes with other students of the same age group.

Year1 Year 2 Year 3 Year 4

CCSE Public Draft 3.1 – 2/6/04 66

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
CS101 CS102 CS103 CS CS CS SE400 SE400
Calc 1 Calc 2 CS106 SE A MA271 SE D SE F Tech elective
NT 181 CS105 SE201 SE212 SE C SE E Tech electiveTech elective
 NT 272 NT 291 Tech elective

Pattern N2S-1c - in a computer-science department

The pattern shown below is typical of a software engineering program that might be built in a
computer science context. This is an adaptation of Pattern N2S-1, as shown above. Such
programs may have evolved from computer science programs or may co-exist with computer
science.

Year1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
CS101 CS102 CS103 CS220 CS226 CS270T SE400 SE400
Calc 1 Calc 2 CS106 SE A MA271 SE D SE F Tech elective
NT181 CS105 SE201 SE212 SE C SE E Tech electiveTech elective
Physics Any science NT272 Linear Alg NT291 Tech elective Tech electiveTech elective
Gen ed Gen ed Gen ed Gen ed Gen ed Gen ed Gen ed

Pattern N2S-1e - in an engineering department

Programs in a North American engineering department typically begin with a rigorous calculus
sequence (three semesters) probability and statistics, physics and chemistry. Introductory courses
in other areas of engineering are given during the first year. For SE programs in EE or CE
departments, circuits and electricity are common. Programming for engineers is usually required
in the first year. The introductory computer science sequence is often the compressed CS111,
CS112 (CCCS) sequence, although we have maintained the 3-course sequence below becuase we
believe this is much better for software engineers.

Year1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
CS101 CS102 CS103 CS220 CS226 CS270T SE400 SE400
Calc 1 Calc 2 CS106 SE A MA271 SE D SE F Tech elective
NT181 CS105 SE201 SE212 SE C SE E Tech electiveTech elective
Physics 1 Physics 2 NT272 Linear Alg NT291 Tech elective Tech electiveTech elective
Chemistry Engineering Calc 3 Gen ed Gen ed Gen ed Gen ed Gen ed

Pattern E-1 - Compressed model for a country in which it is assumed calculus and science
is not needed or is taught in high school, and less general education is needed

Some countries, including most of the UK, have secondary school systems that bring students to
a higher level of science and mathematics. Such systems also tend to have very focused post-

CCSE Public Draft 3.1 – 2/6/04 67

secondary education, requiring much less in the way of general education (humanities etc.). The
following pattern shows one way of teaching SE in those environments.

Year1 Year 2 Year 3
Term 1A Term 1B Term 2A Term 2B Term 3A Term 3B
CS101 CS102 CS103 CS mergedSE400 SE400
CS105 CS106 MA271 SE D SE F Tech elective
NT181 SE201 SE A SE E Tech electiveTech elective
NT272 NT291 SE C SE212 Tech electiveTech elective

Pattern E-2 – Another model for a country where calculus and science is not needed.

This pattern also illustrates the use of SE101 and SE102, as well as the delay of some of the core
SE courses until students have gained maturity.

Year1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
SE101 SE102 CS103 SE200 SE A SE212 SE D SE F
CS overview CS106 CS220 CS226 Tech elect. SE C SE E SE400
CS105 MA271 NT291 CS270T Tech elect. Tech elect. SE400 Tech elect.
NT181 NT272

Pattern N3Q-1 - North American year 3 start – Quartered

Some North American universities operate on a quartered system, with three quarters instead of
two semesters. The following pattern accommodates this, assuming that four courses are taught
each quarter. This pattern also illustrates one way of delaying the SE core courses until third
year.

Year 1 Year 2
Quarter 1A Quarter 1B Quarter 1C Quarter 2A Quarter 2B Quarter 2C
CS101 Calc 2 CS102 CS 103 CS270T CS226
Calc 1 Chemistry Calc 3 CS220 CS106 Math
Physics 1 Physics 2 EngineeringCS105 NT291 Gen ed
Gen ed NT181 Gen ed Math

Year 3 Year 4

Quarter 3A Quarter 3B Quarter 3C
Quarter
4A

Quarter
4B Quarter 4C

SE201 SE A SE D cap1 cap2 cap3

CCSE Public Draft 3.1 – 2/6/04 68

SE212 SE C SE E SE F Tech elect.Tech elect.
MA271 Tech elect. Gen ed Tech elect.Gen ed Gen ed
NT272 Gen ed

Pattern N1S - US model showing starting SE early in CS courses

This model shows the use of the first-year-start sequence: SE101, SE102, and SE200

Year1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
SE101 SE102 CS103 CS270 CS220 SE D CS226 SE400
Calc 1 Calc 2 SE200 SE212 SE A SE E SE400 Tech elect.
CS105 CS106 Physics 1 MA271 SE C Tech elect. SE F Tech elect.
Gen ed Psychology NT181 Physics 2 Sci ElectiveNT291 Gen ed Gen ed
Gen ed Gen ed Gen ed Sci ElectiveSci Elective NT272

Pattern Jpn 1 – Japanese pattern 1

This pattern shows how the courses could be taught in Japan. This is based on a model produced
by the Information Processing Society of Japan (IPSJ). The IPSJ curriculum has been adapted
slightly so as to include the courses in this document. Some of the distinguishing features are as
follows: no calculus or science electives, a large number of prescribed computer science courses,
general education mostly in the first year, and extra programming courses in the first year. The
IPSJ program has a variable numbers of hours for the courses. To simplify, we have shown a
program where courses have a standard number of hours.

Year1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
Calc 1 Calc 2 CS CS CS CS SE400 SE400
CS111 CS112 CS CS SE C SE E Tech elect. NT181
CS extra CS extra CS CS SE D SE F Tech elect. Tech elect.
CS105 CS106 CS CS NT291 NT272
Gen ed Gen ed MA271 SE A SysApp SpecSysApp Spec
Gen ed Gen ed SE201 SE212 SysApp SpecSysApp Spec

CCSE Public Draft 3.1 – 2/6/04 69

Pattern Aus1: Australian model with four courses per semester

This pattern shows a pattern that might be suitable in Australia. It has been adapted from the
curriculum of an Australian university. Many universities in Australia are moving towards
having only four courses per semester, with students consequently learning more per course than
if they were taking five or six courses. As a result, the 40-hour courses discussed in this
document don’t fit and would have to be adapted.

Some of the adaptations are:
• The essentials of NT181 and NT272 are covered in a single somewhat longer course.

• The Discrete math material is combined into a single somewhat longer course.

• The six-course software engineering sequences are not used. Instead there are five
compulsory SE courses beyond SE201. Two of these courses are project courses, allowing
for learning using a non-lecture format.

• Material from SE323 and NT291 are taught in the same course.

• Some of the SE courses broadly introduce SEEK topics, with depth being achieved by
choosing from particular sets of technical electives.

Year1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
CS101 CS102 CS220 CS103 CS Team proj SE400 SE400
Calc 1 Linear Alg CS270T SE SE Tech elect. SE323 NT291 Tech elect.
NT181/272 Dig Logic SE201+ Team proj Tech elect. Tech elect. Tech elect.
Intro EE CS105/106 MA271

Pattern Isr 1: Model for Israel

This pattern is derived from an Israeli university’s computer science program. The program has a
large number of prescribed computer science courses. To make an SE program, we have
replaced some of these with SE courses.

Year1 Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B
CS101 CS102 CS103 CS SE A SE D SE400 SE400
Dig sys CS CS CS SE212 SE E SE F
Calc 1 Calc 2 CS CS SE C NT291 NT272
Linear Alg Abst Algeb MA271 CS CS
NT181 Combinatorics CS105/106 CS CS

CCSE Public Draft 3.1 – 2/6/04 70

Chapter 7: Adaptation to Alternative Environments
Software engineering curricula do not exist in isolation. They are found in institutions; and these
institutions have differing environments, goals, and practices. International issues are not the
only problem curriculum implementers will experience. Software engineering curricula must be
able to be delivered in a variety of fashions and to be part of many different types of institutions.

There are two main categories of “alternative” environments that will be discussed in this
section. The first is the alternative teaching environment. These environments use non-standard
delivery methods. The second is the alternative institutional environment. These institutions
differ in some significant fashion from the usual university.

7.1 Alternative Teaching Environments

As higher education has become more universal, the standard teaching environment has tended
toward an instructor in the front of a classroom. Although some institutions still retain limited
aspects of a tutor-student relationship, the dominant delivery method in most higher education
today is classroom type instruction. The instructor presents material to a class using lecture or
lecture/discussion presentation techniques. The lectures may be augmented by appropriate
laboratory work. Class sizes range from fewer than 10 to more than 500.

Instruction in the computing disciplines has been notable because of the large amount of
experimentation with delivery methods. This may be the result of the instructors’ familiarity with
the capabilities of technology. It may also be the result of the youthfulness of the computing
disciplines. Regardless of the cause, there are numerous papers in the SIGCSE Bulletin, in the
proceedings of the CSEE&T (Conference on Software Engineering Education and Training)
conferences, in the proceeding of the FIE (Frontiers in Education) conferences, and in similar
forums, that recount significant modifications to the conventional lecture and lecture/discussion-
based classrooms. Examples include all laboratory instruction, and the use of electronic
whiteboards and tablet computers, problem based learning, role-playing, activity based learning,
and various studio approaches that integrate laboratory, lecture, and discussion. As has been
mentioned elsewhere in this report, it is imperative that experimentation and exploration be a
part of any software engineering curriculum. Necessary curriculum changes are difficult to
implement in an environment that does not support experimentation and exploration. A software
engineering curriculum will rapidly become out of date unless there is a conscious effort to
implement regular change.

Much recent curricular experimentation has focused on “distance” learning. The term is not well
defined. It applies to situations where students are in different physical locations during a
scheduled class. It also applies to situations where students are in different physical locations and
there is no scheduled class time. It is important to distinguish between these two cases. It is also
important to recognize other cases as well, for example the situation where students cannot
attend regularly scheduled classes.

CCSE Public Draft 3.1 – 2/6/04 71

7.1.1 Students at different physical locations

Instructing students at different physical locations is a problem that has several solutions. Audio
and video links have been used for many years, and broadband Internet connections are less
costly and more accessible. Instructor-student interaction is possible after all involved have
learned how to manage the technology without confusion. Two-way video makes such
interaction almost as natural as the interaction in a self-contained classroom. On-line databases
of problems and examples can be used to further support this type of instruction. Web resources,
email, and Internet chat can provide a reasonable instructor “office hour” experience.
Assignments can be submitted by email or by using a direct Internet connection. The current
computing literature and departmental Web sites contain numerous descriptions of “distance
learning” techniques.

It should be noted that a complete solution to the problem of delivering courses to students in
different locations is not a trivial matter and any solution that is designed will require significant
planning and appropriate additional support. Some may argue that there is no need to make
special provision for added time and support costs when one merely increases the size of an
existing class by adding some “distance” students. Experience indicates that this is always a very
poor idea.

Students in software engineering programs need to have experience working in teams. Students
who are geographically isolated need to be accommodated in some fashion. It is unreasonable to
expect that a geographically separated team will be able to do all of its work using email, chat,
blogs, and newsgroups. Geographically separated teams need additional monitoring and support.
Videoconferencing and teleconferencing should be considered. Instructors may also want to
schedule some meetings with the teams, if distances make this feasible. Beginning students
require significantly more monitoring than advanced students because of their lack of experience
with geographically separated teams.

One other problem with geographically diverse students is the evaluation of student
performance. Appropriate responsible parties will need to be found to proctor examinations and
check identities of examinees. Care should be taken to insure that evaluation of student
performance is done in a variety of ways. Placing too much reliance on one method (e.g., written
examinations) may make the evaluations unreliable.

7.1.2 Students in class at different times

Some institutions have a history of providing instruction to “mature” students who are employed
in a full-time job. Because of their work obligations, employed students are often unable to
attend regular class meetings. Videotaped lectures, copies of class notes, and electronic copies of
class presentations are all useful tools in these situations. A course Web site, a class newsgroup,
and a class distribution list can provide further support.

There is also instruction that does not have any scheduled class meetings. Self-scheduled and
self-paced classes have been used at many institutions. Classes have also been designed to be
completely “Web-based.” Commercial and open-source software has been developed to support
many aspects of self-paced and Web-based courses. Experience shows that the development of
self-paced and Web-based instructional materials is very expensive and very time consuming.

CCSE Public Draft 3.1 – 2/6/04 72

Students who do not have scheduled classroom instruction will still need team activities and
experiences. Many of the comments made above about geographically diverse teams will also
apply to them. An additional problem is created when students are learning at wildly different
rates. Because different students will cover content at different times, it is not feasible to have
content instruction and projects integrated in the same unit. Self-paced project courses are
another serious problem. It will be difficult to coordinate team activities when different team
members are working at different paces.

7.2 Curricula for Alternative Institutional Environments

7.2.1 Articulation problems

Articulation problems arise when students have taken one set of courses at one institution or in
one program and need to apply these to meet the requirements of a different institution and/or
program.

If software engineering curricula existed in isolation, there would be no articulation problems.
But this is rarely the case. Software engineering programs exist in universities with multiple
colleges, schools, divisions, departments, and programs. Software engineering programs exist in
universities that cooperate and compete with other universities and institutions. Some secondary
schools offer university-level instruction, and students expect to receive appropriate credit and
placement. Satisfactory completion of a curriculum must be certified when the student has taken
classes in different areas of the university as well as at other institutions. Software engineering
programs must be designed and managed so that articulation problems are minimized. This
means that the internal and external environment at the institution must be considered when
designing a curriculum.

7.2.2 Coordination with other university curricula

Many of the core classes in a software engineering curriculum could also be core classes in
another curriculum. An introductory computer science course could be required for the curricula
in computer science, computer engineering, and software engineering. Certain architecture
courses might be part of curricula in computer science, computer engineering, software
engineering, and electrical engineering. Mathematics courses could be required for curricula in
mathematics, computer science, software engineering, and computer engineering. A project
management course may be required by software engineering and management information
systems. Upper level software engineering courses could be taken as part of computer science or
computer engineering programs. In most universities, there will be pressure to have courses do
“double duty” whenever possible.

Courses that are a part of more than one curriculum must be carefully designed. There is great
pressure to include everything of significance to all of the relevant disciplines. This pressure
must be resisted. It is impossible to satisfy everyone’s desires. Courses that serve two masters
will inevitably have to omit topics that would be present were it not for the other master.
Curriculum implementers must recognize that perfection is impossible and impractical. The
minor content loss when courses are designed to be part of several curricula is more that
compensated for by the experience of interacting with students with other ideas and background.
Indeed, a case can be made that such experiences are so important in a software engineering
curriculum that special efforts should be made to create courses common to several curricula.

CCSE Public Draft 3.1 – 2/6/04 73

7.2.3 Cooperation with other institutions

In today’s world, students complete their university education via a variety of pathways. While
many students attend just one institution, there are substantial numbers who attend more than
one. For a wide variety of reasons, many students begin their baccalaureate degree program at
one institution and complete it at another. In so doing, students may change their career goals or
declared majors; may move from a liberal arts program to an engineering or scientific program;
may satisfy interim program requirements at one institution; may engage in work-related
experiences; or may be coping with financial, geographic, or personal constraints.

Software engineering curricula must be designed so that these students are able to complete the
program without undue delay and repetition, through recognition of comparable coursework and
aligned programs. It is straightforward to grant credit for previous work (whether in another
department, school, college, or university) when the content of the courses being compared is
substantially identical. There are problems, however, when the content is not substantially
similar. While no one wants a student to receive double credit for learning the same thing twice,
by the same token no one wants a student to repeat a whole course merely because a limited
amount of content topic was not covered in the other course. Faculty do not want to see a
student’s progress unduly delayed because of articulation issues; therefore, the wisest criteria to
use when determining transfer and placement credit are whether the student can reasonably be
expected to 1) address any content deficiencies in a timely fashion and 2) succeed in subsequent
courses.

To the extent that course equivalencies can be identified and addressed in advance via an
articulation agreement, student interests will best be served. Many institutions have formal
articulation agreements with those institutions from which they routinely receive transfer
students. For example, such agreements are frequently found in the United States between
baccalaureate-degree granting institutions and the associate-degree granting institutions that send
them transfer students. Other examples can be seen in the 3-2 agreements in the United States
between liberal arts and engineering institutions; these agreements allow a student to take three
years at a liberal arts institution and two years at an engineering institution, receiving a Bachelor
of Arts degree and a Bachelor of Science degree.

When formulating articulation agreements and designing curricula, it is important to consider
any accreditation requirements that may exist. An accredited program may only retain
accreditation for all its students if it can show that students entering from other institutions have
learned substantially similar material.

The European Credit Transfer System is another attempt to reduce articulation problems in that
continent.

CCSE Public Draft 3.1 – 2/6/04 74

7.3 Programs for Associate-Degree Granting Institutions in the United
States and Community Colleges in Canada

In the United States, as many as one-half of baccalaureate graduates initiated their studies in
associate-degree granting institutions. For this reason, it is important to outline a software
engineering program of study that can be initiated in the two-year college setting, specifically
designed for seamless transfer into an upper-division (years 3 and 4) program. Regardless of
their skills upon entry into the two-year college, students must complete the coursework in its
entirety to well-defined competency points to ensure success in the subsequent software
engineering coursework at the baccalaureate level. For some students, this may require more
than two years of study at the associate level. But regardless of this, the goal is the same: to
provide a program of study that prepares the student for the upper level institution.

The following is a recommended software engineering program of study for implementation by
associate-degree granting institutions. Students who complete this program could reasonably
expect to transfer into the upper division program at the baccalaureate institution. Although
designed with the United States in mind, certain colleges in Canada and other countries may very
well be able to adopt a similar approach.

Proposed Software Engineering Technical Core for North American Community Colleges

For descriptions of the Computing courses and Mathematics courses listed below, see the report
titled Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer
Science [ACM 2002].

Computing courses
 The three-course sequence
CS101I – Programming Fundamentals
CS102I – The Object-Oriented Paradigm
CS103I – Data Structures and Algorithms
 Or the three-course sequence
CS101O – Introduction to Object-Oriented Programming
CS102O – Objects and Data Abstraction
CS103O – Algorithms and Data Structures

SE201-int – Introduction to Software Engineering for Software Engineers

Institutions may also elect to create a software engineering curriculum based on the SE-
specific courses (SE101, SE102, CS103, SE200) outlined in Chapter 6 of this report

Mathematics courses
CS105 – Discrete Structures I
CS106 – Discrete Structures II

CCSE Public Draft 3.1 – 2/6/04 75

The following are to articulate with typical university requirements, and do not cover
core SEEK material

Calculus I
Calculus II

See also the baccalaureate institution for requirements; some institutions may require
linear algebra or differential equations.

Laboratory Science courses
Two courses in lab science for articulation with most baccalaureate programs.
Recommended: Two physics courses, or one physics plus one chemistry course.

General Education
Students also complete first-year and second-year General Education requirements, along
with software engineering technical core.

7.3.1 Special programs

Because software engineering is such a new discipline, there is a significant demand for certain
types of special programs. Some people want to “retrain” in a new field. Others already have a
degree in a related field and want a “post-graduate diploma” in software engineering. The
curricula for such programs must take into account the previous education of the students as well
as their career goals.

It would be foolish to attempt to cram a whole undergraduate curriculum in software engineering
into a short retraining program or a one-year post-graduate program. Such an effort does not
serve the needs of these students. These programs are best when they have appropriate entrance
standards that require at least some practical experience. When this is the case, the students are
usually highly motivated. Such students are able to have their experience serve as a reasonable
substitute for some of the content that would normally be a part of an undergraduate curriculum.

CCSE Public Draft 3.1 – 2/6/04 76

Chapter 8: Program Implementation and Assessment

8.1 Curriculum Resources and Infrastructure

Once a curriculum is established, the success of an educational program critically depends on
three specific elements, namely the faculty, the student body, and the infrastructure.
Furthermore, it is also very important to have industry involvement from the outset and in a
continuous fashion.

8.1.1 Faculty

A high quality faculty and staff is perhaps the single most critical element in the success of a
program. There must be sufficient faculty to teach the program’s courses and support the
educational activities needed to deliver a curriculum and reach the program’s objectives; the
teaching and administrative load must allow time for faculty to engage in scholarly and
professional activities. This is critical given the dynamic nature of computing and software
engineering.

A software engineering program needs faculty who possess both advanced education in
computing with a focus on software, and sufficient experience in software engineering practice.
However, because of the relative youth of software engineering, recruiting faculty possessing the
attributes of traditional faculty (academic credentials, effective teaching capabilities, and
research potential) plus software engineering professional experience is a particularly
challenging problem [Glass 2003]. As an example, it is only recently, in the U.S., that PhD
programs in Software Engineering have been established [ISRI 2003]. Software engineering
faculty should be encouraged and supported in their efforts to become and remain current in
industrial software engineering practice through applied research, industry internships,
consulting, etc.

8.1.2 Students

Another critical factor in the success of a program is the quality of its student body. There should
be admission standards that help assure that students are properly prepared for the program.
Procedures and processes are needed that track and document the progress of students through
the program to ensure that graduates of the program meet the program objectives and desired
outcomes. Appropriate metrics, consistent with the institutional mission and program objectives,
must exist to guide students toward completion of the program in a reasonable period of time,
and to measure the success of the graduates in meeting the program objectives.

Interaction with students about curriculum development and delivery provides valuable
information for assessing and analyzing a curriculum. Involvement of students in professional
organizations and activities extends and enhances their education.

8.1.3 Infrastructure

The program must provide adequate infrastructure and technical support. These include well-
equipped laboratories and classrooms, adequate study areas, and technically competent
laboratory staff to provide adequate technical support. In order for student project teams to be
effective, adequate facilities are also needed to carry out team activities such as team meetings,

CCSE Public Draft 3.1 – 2/6/04 77

inspections and walkthroughs, customer reviews, assessment and reports on team progress, etc.
There should also be sufficient reference and documentation material, and a library with
sufficient holdings in software engineering literature and across related computing disciplines.

Maintaining laboratories and a modern suite of applicable software tools can be a daunting task
because of the dynamic, accelerating, pace of advances in software and hardware technology.
However, as pointed out earlier in this document, it is essential that “students gain experience
using appropriate and up-to-date tools.”

An academic program in software engineering must have sufficient leadership and staff to
provide for proper program administration. This should include adequate levels of student
advising, support services, and interaction with relevant constituencies such as employers and
alumni. The advisory function of the faculty must be recognized by the institution and must be
given appropriate administrative support.

There must be sufficient financial resources to support the recruitment, development and
retention of adequate faculty and staff, the maintenance of an appropriate infrastructure, and all
necessary program activities.

8.1.4 Industry Participation

An additional critical element in the success of a software engineering program is the
involvement and active participation of industry. Industrial advisory boards and industry-
academic partnerships help maintain curriculum relevance and currency. Such relations can
support a variety of activities including programmatic advice from an industry perspective,
student and faculty industrial internships, integration of industry projects into the curriculum,
industry guest lectures, and visiting faculty positions from industry.

8.2 Assessment and Accreditation Issues

In order to maintain a quality curriculum, a software engineering program should be assessed on
a regular basis. Many feel assessment is best accomplished in conjunction with a recognized
accreditation organization. Curriculum guidance and accreditation standards and criteria are
provided by a number of accreditation organizations across a variety of nations and regions
[ABET 2000, BCS 2001,CEAB 2002, ECSA 2000, King 1997, IEI 2000, ISA 1999, JABEE
2003]. In 1998, a joint IEEE/ACM task force drafted accreditation criteria for software
engineering [Barnes 1998], which included guidance and requirements in the following areas:
faculty, curriculum, laboratory and computing resources, students, institutional support and
assessment of program effectiveness. In terms of curriculum, it stipulates that the bachelor’s
program in software engineering must include approximately equal segments in software
engineering, in computer science and engineering, in appropriate supporting areas, and in
advanced materials.

Accreditation typically includes periodic external review of programs, which assures that
programs meet a minimum set of criteria and adhere to an accreditation organization’s standards.
A popular approach to assessment and accreditation is an “outcomes based approach” for which
educational objectives and/or student outcomes are established first; then the curriculum, an
administrative organization, and the infrastructure needed to meet the objectives and outcomes is

CCSE Public Draft 3.1 – 2/6/04 78

put into place.

The assessment should evaluate the program objectives and desired outcomes, the curriculum
content and delivery, and serve as the primary feedback mechanism for continuous
improvement.

In addition to this document and the previous cited accreditation organizations, there are many
sources for assisting a program in forming and assessing its objectives and outcomes [Bagert
1999, Lethbridge 2000, Meyer 2001, Naveda 1997, Parnas 1999, Saiedian 2002; IWCSEA].

8.3 SE in Other Computing-Related Disciplines

Software engineering does not, of course, exist all by itself. It has strong association to other
areas of science and technology especially those related to computing. At one end we have the
work of scientists, and at the other end we have technology and technical specialists. Towards
the center of the spectrum is design, a distinctive feature of engineering programs.

Within this context, computer scientists are primarily focused on seeking new knowledge as for
example in the form of new algorithms and data structures, new database information retrieval
methods, discovery of advanced graphics and human-computer interaction organizing principles,
optimized operating systems and networks, and modern programming languages and tools that
can be used to better the job of a software engineer (and computer engineer for that matter).
It is of note that the CCCS volume has a chapter devoted to the “Changes in the Computer
Science Discipline,” and there are a variety of views about CS as a discipline, and it is worth
mentioning that there is a need to distinguish computer science, as it exists today, from what it
may become in the near future, as a discipline that studies the theoretical underpinnings and
limitations of computing. David Parnas [Parnas 99] speaks to this issue in the statement “An
engineer cannot be sure that a product is fit-for-use unless those limitations are known and have
taken into consideration.” Such limitations include technological limitations (hardware and
programming and design tools available) as well as the fundamental limitations (computability
and complexity theory, and in particular information theory including noise, data corrections,
etc.).

Information technology and other more applied and specialized programs such as network and
system administration, and all engineering technology programs, fit at the opposite side of the
spectrum from CS. Software engineering and computer engineering fall in the center of the
spectrum with their focus on engineering design. The central role that engineering design plays
in software engineering is discussed elsewhere in this document. The software engineer’s focus
should be on an understanding on how to use the theory to solve practical problems.

Because of the pervasive nature of software the scope for the types of problems in software
engineering may be significantly wider than that of other branches of engineering. Within a
specific domain of application, the designer relies on specific education and experience to
evaluate many possible solutions. They have to determine which standard parts can be used and
which parts have to be developed from scratch. To make the necessary decisions, the designer
must have a fundamental knowledge of specialty subjects. While domains span the entire
spectrum of industry, government, and society, there is a shorter list of concrete specialty

CCSE Public Draft 3.1 – 2/6/04 79

application areas such as scientific information systems –including bioinformatics,
astrinformatics, ecoinformtaics, and the like, microsystems, aeronautics and astronautics, etc.

Bibliography for Software Engineering Education
[Abelson 1985] Abelson, H. and SussmanG. J., Structure and Interpretation of Computer

Programs. Cambridge, MA: MIT Press, 1985.
[ABET 2000] Accreditation Board for Engineering and Technology, Accreditation policy and

procedure manual, ABET Inc., November 2000. (http://www.abet.org/images/policies.pdf)
[ACM 1965] ACM Curriculum Committee on Computer Science, “An undergraduate program

in computer science—preliminary recommendations”, Communications of the ACM,
September 1965.

 [ACM 1968] ACM Curriculum Committee on Computer Science, “Curriculum ’68:
Recommendations for the undergraduate program in computer science”, Communications
of the ACM, March 1968.

[ACM 1978] ACM Curriculum Committee on Computer Science, “Curriculum ’78:
Recommendations for the undergraduate program in computer science”, Communications
of the ACM, March 1979.

[ACM 1989] ACM Task Force on the Core of Computer Science, "Computing as a Discipline",
Communications of the ACM, January 1989.

[ACM 1998] ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional
Practices, Software Engineering Code of Ethics and Professional Practice, Version 5.2,
http://www.acm.org/serving/se/code.htm, September 1998.

[ACM 1999] ACM Two-Year College Education Committee. Guidelines for associate-degree
and certificate programs to support computing in a networked environment, The
Association for Computing Machinery, September 1999.

[ACM 2001] ACM/IEEE-Curriculum 2001 Task Force, Computing Curricula 2001, Computer
Science , December 2001. (http://www.computer.org/education/cc2001/final/index.htm)

[ACM 2002] ACM/IEEE-Curriculum 2001 Task Force, Computing Curricula 2003: Guidelines
for Associate-Degree Curricula in Computer Science, December 2002.
(http://www.acmtyc.org/reports/TYC_CS2003_report.pdf)

 [Andrews 2000] Andrews, J.H. and Lutfiyya, H.L., “Experiences with a Software Maintenance
Project Course”, IEEE Transactions on Education, November 2000.

[APP 2000] Advanced Placement Program, Introduction of Java in 2003-2004, The College
Board, December 2000. (http://www.collegeboard.org/ap/computer-science)

[Bagert 1999] Bagert, D., et. al., Guidelines for Software Engineering Education, Version 1.0,
CMU/SEI-99-TR-032, Software Engineering Institute, Carnegie Mellon University, 1999.

[Barnes 1998] Barnes, B., et. al., “Draft Software Engineering Accreditation Criteria”,
Computer, April 1998.

[Bauer 1972] Bauer, F.L., "Software Engineering", Information Processing, 71, 1972

CCSE Public Draft 3.1 – 2/6/04 80

[BCS 1989a] British Computer Society and The Institution of Electrical Engineers,
Undergraduate curricula for software engineers, London, June 1989.

[BCS 1989b] British Computer Society and The Institution of Electrical Engineers, Software in
safety-related systems, London, October 1989.

[BCS 2001] British Computer Society, Guidelines On Course Exemption & Accreditation For
Information For Universities And Colleges, August 2001.
(http://www1.bcs.org.uk/link.asp?sectionID=1114)

 [Beidler et al, 1985] Beidler, J., Austing, R. and Cassel L., Computing Programs in Small
Colleges, Communications of the ACM, June 1985.

[Bennett 1986] Bennett, W., A Position Paper on Guidelines for Electrical and Computer
Engineering Education, IEEE Transactions in Education, August 1986.

[Bloom 1956] Bloom,] B. S.,Ed., Taxonomy of educational objectives: The classification of
educational goals: Handbook I, cognitive domain. Longmans, 1956.

[Bourque 2001] P. Bourque and R. Dupuis, eds. Guide to the Software Engineering Body of
Knowledge, IEEE CS Press, 2001.

[Borstler 2002] Borstler, J. et. al., Teaching PSP: Challenges and Lessons Learned , IEEE
Software, September/October 2002.

[Bott 1995] Bott, F., et. al., . Professional Issues in Software Engineering, 2nd Ed., UCL Press,
1995.

[Brooks 95] Brooks, F. P., The Mythical Man-Month, Essays on Software Engineering,
Anniversary Edition, Addison-Wesley, 1995.

 [Budgen 2003] Budgen, David and Tomayko, James E., Norm Gibbs and His Contribution to
Software Engineering Education Through the SEI Curriculum Modules, Proceedings of
the 16th Conference on CSEE&T, March 2003.

[Burnell 2002] Burnell, L.J., Priest, J.W., and Durrett, J.R., Teaching Distributed
Multidisciplinary Software Development, IEEE Software, September/October, 2002.

[Buxton 1970] Buxton, J.N. and Randell, B. (editors) Software Engineering Techniques, Report
of a Conference Sponsored by NATO Science Committee (Rome, 27 31 October, 1969),
1970.

[Carnegie 1992] Carnegie Commission on Science, Technology, and Government, Enabling the
Future: Linking Science and Technology to Societal Goals, Carnegie Commission,
September 1992.

[Cheston 2002] Cheston, G. A. and Tremblay, Jean-Paul, Integrating Software Engineering in
Introductory Computing Courses, IEEE Software, September/October 2002.

[CEAB 2002] Canadian Engineering Accreditation Board, Accreditation Criteria and
Procedures, Canadian Council of Professional Engineers, 2002.
(http://www.ccpe.ca/e/files/report_ceab.pdf)

[COSINE, 1967] COSINE Committee, Computer Science in Electrical Engineering.
Washington, DC: Commission on Engineering Education, September 1967.

[Cowling 1998] Cowling, A., The First Decade of an Undergraduate Degree Programme in
Software Engineering, Annals of Software Engineering, vol. 6, pp 61-90, 1998

CCSE Public Draft 3.1 – 2/6/04 81

[CSAB 1986] Computing Sciences Accreditation Board, Defining the Computing Sciences
Professions, October 1986. (http://www.csab.org/comp_sci_profession.html)

[CSAB 2000] Computing Sciences Accreditation Board, Criteria for Accrediting Programs in
Computer Science in the United States, Version 1.0, January 2000.
(http://www.csab.org/criteria2k_v10.html)

[CSTB 1994] Computing Science and Telecommunications Board, Realizing the Information
Future, Washington DC: National Academy Press, 1994.

[CSTB 1999] Computing Science and Telecommunications Board, Being Fluent with
Information Technology, Washington DC: National Academy Press, 1999.

[Curtis 1983] Curtis, K.K., Computer manpower: Is there a crisis? Washington DC: National
Science Foundation, 1983. (http://www.acm.org/sigcse/papers/curtis83/)

[Cybulski 2000] Cybulski, J.L. and Linden, T., Learning Systems Design with UML and
Patterns, IEEE Transactions on Education, November 2000

[Davis 1997] Davis, G.b., et. al., IS’97 Model Curriculum and Guidelines for Undergraduate
Degree Programs in Information Systems, Association of Information Technology P
rofessionals, 1997. (http://webfoot.csom.umn.edu/faculty/gdavis/curcomre.pdf)

[Denning 1989] Denning, P.J., et. al., Computing as a Discipline, Communications of the ACM,
January 1989.

[Denning 1992] Denning, P. J., Educating a New Engineer, Communications of the ACM,
December, December 1992.

[Denning 1998] Denning, P.J., Computing the profession, Educom Review, November 1998.
[Denning 1999] Denning P.J., Our Seed Corn is Growing in the Commons, Information Impacts

Magazine, March 1999.
 (http://www.cisp.org/imp/march_99/denning/03_99denning.htm)

[EAB 1983] Educational Activities Board, The 1983 Model Program in Computer Science and
Engineering, Technical Report 932, IEEE Computer Society, December 1983.

[EAB 1986] Educational Activities Board, Design Education in Computer Science and
Engineering, Technical Report 971, IEEE Computer Society, October 1986.

[EC 1977] Education Committee of the IEEE Computer Society, A Curriculum in Computer
Science and Engineering, Publication EHO119-8, IEEE Computer Society, January 1977.

[ECSA 2000] Engineering Council Of South Africa, Policy on Accreditation of University
Bachelors Degrees, August 2000. (http://www.ecsa.co.za/)

[Fairley 1985] Fairley, R., Software Engineering Concepts, McGraw-Hill, 1985.
[Finkelstein 1993] Finkelstein, A., European Computing Curricula: A Guide and Comparative

Analysis, Computer Journal, vol. 36, no. 4, pp 299-319, 1993.
[Fleddermann 2000] Fleddermann, C.B., Engineering Ethics Cases for Electrical and Computer

Engineering Students, IEEE Transactions on Education, vol 43, no 3, 284 – 287, August
2000.

[Ford 1994] Ford, G., A Progress Report on Undergraduate Software Engineering Education,
CMU/SEI-94-TR-11, Software Engineering Institute, Carnegie Mellon University, May
1994.

CCSE Public Draft 3.1 – 2/6/04 82

[Ford 1996] Ford, G. and Gibbs, N. E., A Mature Profession of Software Engineering,
CMU/SEI-96-TR-004, Software Engineering Institute, Carnegie Mellon University,
January 1996.

[Freeman 1976] Freeman, P., Wasserman, A.I. and Fairley, R.E., Essential Elements of Software
Engineering Education, Proc. of the 2nd International Conference on Software
Engineering, IEEE Computer Society Press, 1976, pp. 116-122.

[Freeman 1978] Freeman, P. and Wasserman, A.I., A Proposed Curriculum for Software
Engineering Education, Proc. of the 3rd International Conference on Software Engineering,
Atlanta, 1978, pp. 56-62.

[Gibbs 1986] Gibbs, N.E. and Tucker, A. B., Model Curriculum for a Liberal Arts Degree in
Computer Science, Communications of the ACM, 29(3):202-210, March 1986.

[Giladi 1999] Giladi, R., An Undergraduate Degree Program for Communications Systems
Engineering, IEEE Transactions on Education, vol 42, no 4, 295 – 304, November 1999.

[Glass 2003] Glass, R. L., A Big Problem in Academic Software Engineering and a Potential
Outside-the-Box Solution, IEEE Software, Vol. 20, No. 4, July/August 2003.

[Gorgone 2002] Gorgone, J. T., et. al., IS 2002: Model Curriculum for Undergraduate Degree
Programs in Information Systems, published by the ACM, 2002.

[Hilburn 2002a] Hilburn, T. B. Software Engineering Education: A Modest Proposal, IEEE
Software, Vol. 14, No. 4, November 1997.

[Hilburn, 2002b] Hilburn, T. B. and Humphrey, W. S., The Impending Changes in Software
Education, IEEE Software, Vol 19, No. 5, September / October, 22 – 24, 2002.

[Hilburn, 2003] Hilburn, T.B., A.E.K. Sobel, G.W. Hislop and R. Duley, “Engineering an
Introductory Software Engineering Curriculum, Proceedings of the 16th Conference on
CSEE&T, 99-106, March 2003.

 [Hunter 2001] Hunter, R. and Thayer, R. H. (editors) Software Process Improvement, IEEE
Computer Society, Los Alamitos, CA, 2001.

[IEI 2000] The Institution of Engineers of Ireland, Accreditation of Engineering Degrees, May
2000. (http://www.iei.ie/Accred/accofeng.pdf)

[ISA 1999] Institution of Engineers, Australia, Manual For The Accreditation Of Professional
Engineering Programs, October 1999.
(http://www.ieaust.org.au/membership/res/downloads/AccredManual.pdf)

[ISRI 2003] Institute for Software Research, International, PhD Program in Software
Engineering, School of computer Science Carnegie Mellon University, 2003.
(http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/isri/www/Design/phd.html)

[IEEE 1990] IEEE STD 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, IEEE Computer Society, 1990.

[IEEE 2001] Institute for Electrical and Electronic Engineers. IEEE code of ethics. Piscataway,
NJ: IEEE, May 2001. (http://www.ieee.org/about/whatis/code.html)

[IEEE 2003] Certified Software Development Professional, IEEE Computer Society.
(http://www.computer.org/certification/)

CCSE Public Draft 3.1 – 2/6/04 83

[JABEE 2003] Japan Accreditation Board for Engineering, Criteria for Accrediting Japanese
Engineering Education Programs 2002-2003.
(http://www.jabee.org/english/OpenHomePage/e_criteria&procedures.htm)

[Juristo 2003] Juristo, N., Analysis of Software Engineering Degree Establishment in Europe,
Keynote Address, 16th Conference on Software Engineering Education & Training, March
2003. (http://www.ls.fi.upm.es/cseet03/keynotes/Natalia_Juristo_CSEET03.pdf)

[Kelemen 1999] Kelemen, C. F. (editor), Computer Science Report to the CUPM Curriculum
Foundations Workshop in Physics and Computer Science. Report from a workshop at
Bowdoin College, October 28-31, 1999.

[Kemper 1990] Kemper, J., Engineers and Their Profession, Oxford University Press, 1990.
[King 1997] King, W.K., Engel, G., Report on the International Workshop on Computer Science

and Engineering Accreditation, Salt City, Utah, 1996, Computer Society, 1997
[Koffmanl 1984] Koffman, E. P., Miller, P. L., and Wardle, C. E., Recommended curriculum for

CS1: 1984 a report of the ACM curriculum task force for CS1, Communications of the
ACM, 27(10):998-1001, October 1984.

[Koffman 1985] Koffman, E. P., Stemple, D., and Wardle, C. E., Recommended Curriculum for
CS2, 1984: A Report of the ACM Curriculum Task Force for CS2, Communications of the
ACM, 28(8):815-818, August 1985.

[Lee 1998] Lee, E. A. and Messerschmitt, D. G., Engineering and Education for the Future,
IEEE Computer, 77-85, January 1998.

[Lethbridge 2000] Lethbridge, T., What Knowledge is Important to a Software Engineer?, IEEE
Computer, Vol 33, No. 6, pp. 44-50, May 2000.

[Lidtke 1999] Lidtke, D. K., et. al., ISCC ’99: An Information Systems-Centric Curriculum
’99, July 1999. (http://www.iscc.unomaha.edu)

[Lutz 2001] Lutz, M. J., Software Engineering on Internet Time, Computer, 34, 5, 36, May 2001.
[Marciniak 1994] Marciniak, J. (editor-in-chief), Encyclopedia of Software Engineering, John

Wiley & Sons, 1994.
[Martin 1996] Martin, C. D., et. al., Implementing a Tenth Strand in the CS Curriculum,

Communications of the ACM, 39(12):75-84, December 1996.
[McDermid, 1991] McDermid, J. (editor), Software Engineer’s Reference Book, Butterworth-

Heinemann Ltd, Oxford, England, 1991.
[Meyer 2001 Meyer, B., Software Engineering in the Academy, IEEE Computer, 34,5, 28-35,

May 2001.
[Mulder 1975] Mulder, M. C., Model Curricula for Four-Year Computer Science and

Engineering Programs: Bridging the Tar Pit, Computer, 8(12):28-33, December 1975.
[Mulder 1984] Mulder, M. C. and Dalphin, J., Computer Science Program Requirements and

Accreditation—an Interim Report of the ACM/IEEE Computer Society Joint Task Force,
Communications of the ACM, 27(4):330-335, April 1984.

[Mulder 1998] Mulder, F. and van Weert, T., Informatics in Higher Education: Views on
Informatics and Non-informatics Curricula, Proceedings of the IFIP/WG3.2 Working
Conference on Informatics (computer science) as a discipline and in other disciplines:
What is in common?, Chapman and Hall, London, 1998.

CCSE Public Draft 3.1 – 2/6/04 84

[NACE 2003] National Association of Colleges and Employers. Job Outlook 2003 .
(http://www.naceweb.org/)

[Naur 1969] Naur, P. and Randell, B. (editors), Software Engineering: Report on a Conference
Sponsored by the NATO Science Committee, (7 – 11 October 1968), Brussels, Scientific
Affairs Division, NATO, 1969.

[Naveda 1997] Naveda, J. F, and Lutz, M. J., The Road Less Traveled: A Baccalaureate Degree
in Software Engineering, Proceedings of 1997 Conference on Software Engineering
Education and Training, April, 1997.

[Neumann 1995] Neumann, P. G., Computer Related Risks, New York: ACM Press, 1995.
[Nordheden 1999] Nordheden K. J. and Hoeflich, M. H., Undergraduate Research &

Intellectual Property Rights, IEEE Transactions on Education, 42(4), 233, 1999.
[NSF 1996] National Science Foundation Advisory Committee, Shaping the Future: New

Expectations for Undergraduate Education in Science, Mathematics, Engineering, and
Technology, Washington DC: National Science Foundation, 1996.

[NTIA 1999] National Telecommunications and Information Administration, Falling through
the Net: Defining the Digital Divide, Department of Commerce, November 1999.

[Nunamaker 1982] Nunamaker Jr., J. F., Couger, J. D., and Davis G. B., Information Systems
Curriculum Recommendations for the 80s: Undergraduate and Graduate programs,
Communications of the ACM, 25(11):781-805, November 1982.

[Oklobdzija 2002] Oklobdzija, V. G. (editor), The Computer Engineering Handbook, CRC Press,
2002.

[OTA 1988] Office of Technology Assessment, Educating Scientists and Engineers: Grade
School to Grad School, OTA-SET-377, U.S. Government Printing Office, June 1988.

 [QAA 2000] Quality Assurance Agency for Higher Education, A Report on Benchmark Levels
for Computing, Southgate House, 2000.

[Parnas 1999] Parnas, D. L., Software Engineering programs Are Not Computer Science
Programs, IEEE Software, November/December 1999, pp 19-30.

[Paulk 1995] Paulk, M., et. al., The capability maturity model: Guidelines for Improving the
Software Process, Reading, MA: Addison-Wesley, 1995.

[PMI 2000] Project Management Institute, Guide to the Project Management Body of
Knowledge, PMI, 2000.

[Ralston 2000] Ralston, A., Reilly, E. D., and Hemmendinger, D. (editors), Encyclopedia of
Computer Science, 4th edition, Nature Publishing Group, London, England, 2000.

[Ramamoorthy 1996] Ramamoorthy, C. V. and Thai, W., Advances in Software Engineering,
Communications of the ACM, 29, 10, 47-58, October, 1996.

[Richard 1999] Richard, W. D., Taylor, D. E., and Zar, D. M., A Capstone Computer
Engineering Design Course, IEEE Transactions on Education, vol 42, no 4, 288 – 294,
November 1999.

[Roberts 2001] Roberts, E. and Engel, G. (editors) Computing Curricula 2001: Computer
Science, Report of The ACM and IEEE-Computer Society Joint Task Force on Computing
Curricula, Final Report, December 2001.

CCSE Public Draft 3.1 – 2/6/04 85

[Roberts 1999] Roberts, E., Conserving the Seed Corn: Reflections on the Academic Hiring
Crisis, SIGCSE Bulletin, (31)4:4-9, December 1999.

[Royce 1970] Royce, W. W., Managing the Development of Large Software Systems: Concepts
and Techniques, Proceedings of WESCON, August 1970.

[SAC 1967] President’s Science Advisory Commission, Computers in Higher Education.
Washington DC: The White House, February 1967.

[Saiedian 2002] Hossein Saiedian, Donald J. Bagert, and Nancy R. Mead Software Engineering
Programs: Dispelling the Myths and Misconceptions, IEEE Software, vol 19 , no. 5,
September / October, 35 – 41, 2002.

[Shaw 1985] Mary Shaw. The Carnegie-Mellon curriculum for undergraduate computer
science. New York: Springer-Verlag, 1985.

[Shaw 1990] Mary Shaw "Prospects for an Engineering Discipline of Software", IEEE
Software, 7, 6, November 1990, pp.15-24
[Shaw 1991] Mary Shaw and James E Tomayko. Models for undergraduate courses in software

engineering. Pittsburgh: Software Engineering Institute, Carnegie Mellon University,
January 1991.

[Shaw 1992] Mary Shaw. We can teach software better. Computing Research News 4(4):2-12,
September 1992.

[Shaw 2002] Mary Shaw, “What makes good research in software engineering?, International
Journal on Software Tools for Technology Transfer, vol 4, DOI 10.1007/s10009-002-0083-
4, June 2002

[Shaw 2001] Mary Shaw, “The Coming-of-Age of Software Architecture Research”,
Proceedings of the 23rd International Conference on Software Engineering, Toronto, pp.
656-664a, Canada, IEEE Computer Society, 2001.

 [SIGCHI 1992] Special Interest Group on Computer-Human Interaction, ACM SIGCHI
Curricula for Human-Computer Interaction, New York: Association for Computing
Machinery, 1992.

[Sobel 2002] Sobel, A.E.K. and M. Clarkson, Formal Methods Application: An Empirical Tale
of Software Development, IEEE Transactions on Software Engineering, Vol 28. No. 3,
March 2002.

[Sobel 2001] Sobel, A.E.K., Emphasizing Mathematical Analysis in a Software Engineering
Curriculum, IEEE Transaction on Education, Vol. 44, No. 2, CD-ROM, May 2001.

[Sobel 2000] Sobel, A.E.K., Empirical Results of a Software Engineering Curriculum
Incorporating Formal Methods, Proceedings of SIGCSE, 157-161, March 2000.

[Thayer 1993] Thayer, R. H. and McGettrick, A. (editors), Software Engineering – a European
Perspective, IEEE Computer Society Press, Los Alamitos, CA 1993.

[Thompson 2002] Thompson, J. B. and Edwards, H. M., Preliminary Report on the CSEET 2002
Workshop “Developing the Software Engineering Volume of Computing Curriculum
2001”, Forum for Advancing Software Engineering Education (FASE), Vol. 12 No. 3
(Issue 146), March 15, 2002

CCSE Public Draft 3.1 – 2/6/04 86

[Thompson 2003] Thompson, J. B. and Edwards, H. M., Report on the 2nd International Summit
on Software Engineering Education, ACM SIGSOFT Software Engineering Notes, Volume
28, Issue 4 (July) pp 21-26, 2003.

[Thompson 2004] Thompson, J. B., Edwards, H. M., and Lethbridge, T.C., Post-Summit

Proceedings International Summit on Software Engineering Education (SSEE), held on
May 21, 2002 and co-located with the 24th IEEE-CS/ACM International Conference on
Software Engineering (ICSE2002), in Orlando, Florida, University of Sunderland Press,
Sunderland, UK, ISBN: 1-873757-34-4 (soft cover), 1-873757-89-1(CD), 2004.

[Tomayko 1999] Tomayko, James E., Forging a discipline: An outline history of software
engineering education, Annals of Software Engineering, v.6 n.1-4, p.3-18, April 1999.

[Tremblay 2000] Tremblay, G., Formal Methods: Mathematics, Computer Science, or Software
Engineering?, IEEE Transactions on Education, vol 43, no 4, 377 – 382, November 2000.

[Tucker 1991] Tucker, A. B., et. al., . Computing Curricula ’91, Association for Computing
Machinery and the IEEE Computer Society, 1991.

[Umphress 2002] Umphress, D.A., Hendrix, T. D., and Cross, J. H., Software Process in the
Classroom: The Capstone Project Experience, IEEE Software, vol 19 , no. 5,
September/October, 78 – 85, 2002.

[Walker 1996] Walker, H.M. and Schneider, G. M., A Revised Model Curriculum for a Liberal
Arts Degree in Computer Science, Communications of the ACM, 39(12):85-95, December
1996.

[Zadeh 1968] Zade, L. A., Computer Science as a Discipline, Journal of Engineering Education,
58(8):913-916, April 1968.

CCSE Public Draft 3.1 – 2/6/04 87

Appendix A: Detailed Descriptions of Proposed Courses
In this appendix, we provide details of the courses referred to in Chapter 6. Some of the courses
are taken from the CCCS volume, whereas others are new courses being introduced in this
software engineering volume. For the new courses, the following is provided: a full course
description, a list of prerequisites, learning objectives, and a listing of the anticipated coverage of
SEEK (Chapter 4) provided by the course. In some cases, teaching modules, suggested labs and
exercises, and other pedagogical guidance is provided. For CCCS courses, we just list the SEEK
coverage.

In most cases, coverage of SEEK is considerably less than the 40 lecture-equivalent-hours that is
used as a benchmark for a ‘complete’ course. This leaves space for institutions and instructors to
tailor the courses, covering extra material or covering the given material in more depth.

CCCS introductory courses

Since these courses are taken directly from the CCCS volume, the reader should consult that
volume for more details [ACM 2001]. Note that other CCCS courses could be substituted for
these.

CS101I Programming Fundamentals

This course is taken directly from the Computer Science Volume (CCCS)

Course description:
Introduces the fundamental concepts of procedural programming. Topics include data types,
control structures, functions, arrays, files, and the mechanics of running, testing, and debugging.
The course also offers an introduction to the historical and social context of computing and an
overview of computer science as a discipline.
Prerequisites: No programming or computer science experience is required. Students should
have sufficient facility with high-school mathematics to solve simple linear equations and to
appreciate the use of mathematical notation and formalism.
Syllabus:

• Computing applications: Word processing; spreadsheets; editors; files and directories
• Fundamental programming constructs: Syntax and semantics of a higher-level language;

variables, types, expressions, and assignment; simple I/O; conditional and iterative
control structures; functions and parameter passing; structured decomposition

• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in
the problem-solving process; implementation strategies for algorithms; debugging
strategies; the concept and properties of algorithms

• Fundamental data structures: Primitive types; arrays; records; strings and string
processing

• Machine level representation of data: Bits, bytes, and words; numeric data representation
and number bases; representation of character data

• Overview of operating systems: The role and purpose of operating systems; simple file
management

CCSE Public Draft 3.1 – 2/6/04 88

• Introduction to net-centric computing: Background and history of networking and the
Internet; demonstration and use of networking software including e-mail, telnet, and FTP

• Human-computer interaction: Introduction to design issues
• Software development methodology: Fundamental design concepts and principles;

structured design; testing and debugging strategies; test-case design; programming
environments; testing and debugging tools

• Social context of computing: History of computing and computers; evolution of ideas and
machines; social impact of computers and the Internet; professionalism, codes of ethics,
and responsible conduct; copyrights, intellectual property, and software piracy.

Total hours of SEEK coverage: 39
CMP.cf (30 core hours of 140) - Computer Science foundations
 CMP.cf.1 (13 core hours of 39) - Programming Fundamentals
 CMP.cf.2 (3 core hours of 31) - Algorithms, Data Structures/Representation
 CMP.cf.3 (2 core hours of 5) - Problem solving techniques
 CMP.cf.6 (1 core hour of 1) - Basic concept of a system
 CMP.cf.7 (1 core hour of 1) - Basic user human factors
 CMP.cf.8 (1 core hour of 1) - Basic developer human factors
 CMP.cf.9 (7 core hours of 12) - Programming language basics
 CMP.cf.10 (1 core hour of 10) - Operating system basics key concepts from CCCS
 CMP.cf.12 (1 core hour of 5) - Network communication basics
CMP.tl (1 core hour of 4) - Construction Tools
PRF.pr (4 core hours of 20) - Professionalism
 PRF.pr.2 - Codes of ethics and professional conduct
 PRF.pr.3 - Social, legal, historical, and professional issues and concerns
 PRF.pr.6 - The economic impact of software
MAA.rfd (1 core hour of 3) - Requirements fundamentals
DES.con (1 core hour of 3) - Software design concepts
 DES.con.1 - Definition of design
VAV.rev (1 core hour of 6) - Reviews
 VAV.rev.1 - Desk checking
VAV.tst (1 core hour of 21) - Testing
 VAV.tst.1 - Unit testing

CS102I The Object-Oriented Paradigm

This course is taken directly from the Computer Science Volume (CCCS)

Course description:
Introduces the concepts of object-oriented programming to students with a background in the
procedural paradigm. The course begins with a review of control structures and data types with
emphasis on structured data types and array processing. It then moves on to introduce the object-
oriented programming paradigm, focusing on the definition and use of classes along with the
fundamentals of object-oriented design. Other topics include an overview of programming
language principles, simple analysis of algorithms, basic searching and sorting techniques, and
an introduction to software engineering issues.

CCSE Public Draft 3.1 – 2/6/04 89

Prerequisites: CS101I

Syllabus:

• Review of control structures, functions, and primitive data types
• Object-oriented programming: Object-oriented design; encapsulation and information-

hiding; separation of behavior and implementation; classes, subclasses, and inheritance;
polymorphism; class hierarchies

• Fundamental computing algorithms: simple searching and sorting algorithms (linear and
binary search, selection and insertion sort)

• Fundamentals of event-driven programming
• Introduction to computer graphics: Using a simple graphics API
• Overview of programming languages: History of programming languages; brief survey of

programming paradigms
• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;

intermediate languages
• Introduction to language translation: Comparison of interpreters and compilers; language

translation phases; machine-dependent and machine-independent aspects of translation
• Introduction to database systems: History and motivation for database systems; use of a

database query language
• Software evolution: Software maintenance; characteristics of maintainable software;

reengineering; legacy systems; software reuse

Total hours of SEEK coverage: 36
CMP.cf (30 core hours of 140) - Computer Science foundations
 CMP.cf.1 (13 core hours of 39) - Programming Fundamentals
 CMP.cf.2 (3 core hours of 31) - Algorithms, Data Structures/Representation
 CMP.cf.3 (3 core hours of 5) - Problem solving techniques
 CMP.cf.4 (3 core hours of 5) - Abstraction -- use and support for
 CMP.cf.5 (2 core hours of 20) - Computer organization
 CMP.cf.9 (5 core hours of 12) - Programming language basics
 CMP.cf.11 (1 core hour of 10) - Database basics
CMP.ct (1 core hour of 20) - Construction technologies
 DES.con.4 - Design principles
DES.hci (3 core hours of 12) - Human computer interface design
 DES.hci.1 - General HCI design principles
VAV.fnd (1 core hour of 5) - V&V terminology and foundations
 VAV.fnd.1 - Objectives and constraints of V&V
EVO.pro (1 core hour of 6) - Evolution processes
 EVO.pro.1 - Basic concepts of evolution and maintenance

CCSE Public Draft 3.1 – 2/6/04 90

CS103 Data Structures and Algorithms

This course is taken directly from the Computer Science Volume (CCCS)

Course description:
Builds on the foundation provided by the CS101I-102I sequence to introduce the fundamental
concepts of data structures and the algorithms that proceed from them. Topics include recursion,
the underlying philosophy of object-oriented programming, fundamental data structures
(including stacks, queues, linked lists, hash tables, trees, and graphs), the basics of algorithmic
analysis, and an introduction to the principles of language translation.
Prerequisites: CS102I; discrete mathematics at the level of CS105 is also desirable.
Syllabus:

• Review of elementary programming concepts
• Fundamental data structures: Stacks; queues; linked lists; hash tables; trees; graphs
• Object-oriented programming: Object-oriented design; encapsulation and information

hiding; classes; separation of behavior and implementation; class hierarchies; inheritance;
polymorphism

• Fundamental computing algorithms: O(N log N) sorting algorithms; hash tables,
including collision-avoidance strategies; binary search trees; representations of graphs;
depth- and breadth-first traversals

• Recursion: The concept of recursion; recursive mathematical functions; simple recursive
procedures; divide-and-conquer strategies; recursive backtracking; implementation of
recursion

• Basic algorithmic analysis: Asymptotic analysis of upper and average complexity
bounds; identifying differences among best, average, and worst case behaviors; big "O,"
little "o," omega, and theta notation; standard complexity classes; empirical
measurements of performance; time and space tradeoffs in algorithms; using recurrence
relations to analyze recursive algorithms

• Algorithmic strategies: Brute-force algorithms; greedy algorithms; divide-and-conquer;
backtracking; branch-and-bound; heuristics; pattern matching and string/text algorithms;
numerical approximation algorithms

• Overview of programming languages: Programming paradigms
• Software engineering: Software validation; testing fundamentals, including test plan

creation and test case generation; object-oriented testing

Total hours of SEEK coverage: 31
CMP.cf (30 core hours of 140) - Computer Science foundations
 CMP.cf.1 (13 core hours of 39) - Programming Fundamentals
 CMP.cf.2 (15 core hours of 31) - Algorithms, Data Structures/Representation
 CMP.cf.4 (2 core hours of 5) - Abstraction -- use and support for
 CMP.cf.9 - Programming language basics
VAV.tst (1 core hour of 21) - Testing
 VAV.tst.2 - Exception handling

CCSE Public Draft 3.1 – 2/6/04 91

Intermediate fundamental computer science courses

This is a sample of CCCS courses that can be used to teach required material in SEEK. Other
combinations of CCCS courses could be used, or new courses could be created to cover the same
material. If this particular sequence of three courses is used, then the students will be taught
much material beyond the essentials specified in SEEK. We believe many software engineering
programs will want to provide as much computer science as this, or even more.

CS220 Computer Architecture

This course is taken directly from the CCCS volume.

Course description:
Introduces students to the organization and architecture of computer systems, beginning with the
standard von Neumann model and then moving forward to more recent archictural concepts.
Prerequisites: introduction to computer science (any implementation of CS103 or CS112),
discrete structures (CS106 or CS115)
Syllabus:

• Digital logic: Fundamental building blocks (logic gates, flip-flops, counters, registers,
PLA); logic expressions, minimization, sum of product forms; register transfer notation;
physical considerations (gate delays, fan-in, fan-out)

• Data representation: Bits, bytes, and words; numeric data representation and number
bases; fixed- and floating-point systems; signed and twos-complement representations;
representation of nonnumeric data (character codes, graphical data); representation of
records and arrays

• Assembly level organization: Basic organization of the von Neumann machine; control
unit; instruction fetch, decode, and execution; instruction sets and types (data
manipulation, control, I/O); assembly/machine language programming; instruction
formats; addressing modes; subroutine call and return mechanisms; I/O and interrupts

• Memory systems: Storage systems and their technology; coding, data compression, and
data integrity; memory hierarchy; main memory organization and operations; latency,
cycle time, bandwidth, and interleaving; cache memories (address mapping, block size,
replacement and store policy); virtual memory (page table, TLB); fault handling and
reliability

• Interfacing and communication: I/O fundamentals: handshaking, buffering, programmed
I/O, interrupt-driven I/O; interrupt structures: vectored and prioritized, interrupt
acknowledgment; external storage, physical organization, and drives; buses: bus
protocols, arbitration, direct-memory access (DMA); introduction to networks;
multimedia support; raid architectures

• Functional organization: Implementation of simple datapaths; control unit: hardwired
realization vs. microprogrammed realization; instruction pipelining; introduction to
instruction-level parallelism (ILP)

• Multiprocessor and alternative architectures: Introduction to SIMD, MIMD, VLIW,
EPIC; systolic architecture; interconnection networks; shared memory systems; cache
coherence; memory models and memory consistency

CCSE Public Draft 3.1 – 2/6/04 92

• Performance enhancements: RISC architecture; branch prediction; prefetching;
scalability

• Contemporary architectures: Hand-held devices; embedded systems; trends in processor
architecture

Total hours of SEEK coverage: 15
CMP.cf (15 core hours of 140) - Computer Science foundations
 CMP.cf.5 (15 core hours of 20) - Computer organization

CS226 Operating Systems and Networking

This course is taken directly from the CCCS volume.

Course description:
Introduces the fundamentals of operating systems together with the basics of networking and
communications.
Prerequisites: introduction to computer science (any implementation of CS103 or CS112),
discrete structures (CS106 or CS115)
Syllabus:

• Introduction to event-driven programming
• Using APIs: API programming; class browsers and related tools; programming by

example; debugging in the API environment
• Overview of operating systems: Role and purpose of the operating system; history of

operating system development; functionality of a typical operating system
• Operating system principles: Structuring methods; abstractions, processes, and resources;

concepts of application program interfaces; device organization; interrupts; concepts of
user/system state and protection

• Introduction to concurrency: Synchronization principles; the "mutual exclusion" problem
and some solutions; deadlock avoidance

• Introduction to concurrency: States and state diagrams; structures; dispatching and
context switching; the role of interrupts; concurrent execution; the "mutual exclusion"
problem and some solutions; deadlock; models and mechanisms; producer-consumer
problems and synchronization

• Scheduling and dispatch: Preemptive and nonpreemptive scheduling; schedulers and
policies; processes and threads; deadlines and real-time issues

• Memory management: Review of physical memory and memory management hardware;
overlays, swapping, and partitions; paging and segmentation; placement and replacement
policies; working sets and thrashing; caching

• Introduction to distributed algorithms: Consensus and election; fault tolerance
• Introduction to net-centric computing: Background and history of networking and the

Internet; network architectures; the range of specializations within net-centric computing
• Introduction to networking and communications: Network architectures; issues

associated with distributed computing; simple network protocols; APIs for network
operations

• Introduction to the World-Wide Web: Web technologies; characteristics of web servers;
nature of the client-server relationship; web protocols; support tools for web site creation
and web management

CCSE Public Draft 3.1 – 2/6/04 93

• Network security: Fundamentals of cryptography; secret-key algorithms; public-key
algorithms; authentication protocols; digital signatures; examples

Total hours of SEEK coverage: 16
CMP.cf (16 core hours of 140) - Computer Science foundations
 CMP.cf.2 (3 core hours of 31) - Algorithms, Data Structures/Representation
 CMP.cf.10 (9 core hours of 10) - Operating system basics key concepts from CCCS
 CMP.cf.12 (4 core hours of 5) - Network communication basics

CS270T Databases

This course is taken directly from the CCCS volume.

Course description:
Introduces the concepts and techniques of database systems.
Prerequisites: introduction to computer science (any implementation of CS103 or CS112),
discrete structures (CS106 or CS115)
Syllabus:
• Information models and systems: History and motivation for information systems;

information storage and retrieval; information management applications; information capture
and representation; analysis and indexing; search, retrieval, linking, navigation; information
privacy, integrity, security, and preservation; scalability, efficiency, and effectiveness

• Database systems: History and motivation for database systems; components of database
systems; DBMS functions; database architecture and data independence

• Data modeling: Data modeling; conceptual models; object-oriented model; relational data
model

• Relational databases: Mapping conceptual schema to a relational schema; entity and
referential integrity; relational algebra and relational calculus

• Database query languages: Overview of database languages; SQL; query optimization; 4th-
generation environments; embedding non-procedural queries in a procedural language;
introduction to Object Query Language

• Relational database design: Database design; functional dependency; normal forms; multi-
valued dependency; join dependency; representation theory

• Transaction processing: Transactions; failure and recovery; concurrency control

• Distributed databases: Distributed data storage; distributed query processing; distributed
transaction model; concurrency control; homogeneous and heterogeneous solutions; client-
server

• Physical database design: Storage and file structure; indexed files; hashed files; signature
files; b-trees; files with dense index; files with variable length records; database efficiency
and tuning

CCSE Public Draft 3.1 – 2/6/04 94

Total hours of SEEK coverage: 13
CMP.cf (11 core hours of 140) - Computer Science foundations
 CMP.cf.2 (2 core hours of 31) - Algorithms, Data Structures/Representation
 CMP.cf.11 (9 core hours of 10) - Database basics
MAA.md (2 core hours of 19) - Modeling

Mathematics fundamentals courses

CS105 Discrete Structures I

This course is taken directly from the CCCS volume.

Course description:
Introduces the foundations of discrete mathematics as they apply to computer science, focusing
on providing a solid theoretical foundation for further work. Topics include functions, relations,
sets, simple proof techniques, Boolean algebra, propositional logic, digital logic, elementary
number theory, and the fundamentals of counting.
Prerequisites: Mathematical preparation sufficient to take calculus at the college level.
Syllabus:

• Introduction to logic and proofs: Direct proofs; proof by contradiction; mathematical
induction

• Fundamental structures: Functions (surjections, injections, inverses, composition);
relations (reflexivity, symmetry, transitivity, equivalence relations); sets (Venn diagrams,
complements, Cartesian products, power sets); pigeonhole principle; cardinality and
countability

• Boolean algebra: Boolean values; standard operations on Boolean values; de Morgan's
laws

• Propositional logic: Logical connectives; truth tables; normal forms (conjunctive and
disjunctive); validity

• Digital logic: Logic gates, flip-flops, counters; circuit minimization
• Elementary number theory: Factorability; properties of primes; greatest common divisors

and least common multiples; Euclid's algorithm; modular arithmetic; the Chinese
Remainder Theorem

• Basics of counting: Counting arguments; pigeonhole principle; permutations and
combinations; binomial coefficients

Total hours of SEEK coverage: 24
CMP.cf (3 core hours of 140) - Computer Science foundations
 CMP.cf.5 (3 core hours of 20) - Computer organization
FND.mf (21 core hours of 56) - Mathematical foundations
 FND.mf.1 (6 core hours of 6) - Functions, Relations and Sets
 FND.mf.2 (5 core hours of 9) - Basic Logic
 FND.mf.3 (4 core hours of 9) - Proof Techniques
 FND.mf.4 (6 core hours of 6) - Basic Counting
 FND.mf.10 - Number Theory

CCSE Public Draft 3.1 – 2/6/04 95

CS106 Discrete Structures II

This course is taken directly from the CCCS volume.

Course description:
Continues the discussion of discrete mathematics introduced in CS105. Topics in the second
course include predicate logic, recurrence relations, graphs, trees, matrices, computational
complexity, elementary computability, and discrete probability.
Prerequisites: CS105
Syllabus:

• Review of previous course
• Predicate logic: Universal and existential quantification; modus ponens and modus

tollens; limitations of predicate logic
• Recurrence relations: Basic formulae; elementary solution techniques
• Graphs and trees: Fundamental definitions; simple algorithms ; traversal strategies; proof

techniques; spanning trees; applications
• Matrices: Basic properties; applications
• Computational complexity: Order analysis; standard complexity classes
• Elementary computability: Countability and uncountability; diagonalization proof to

show uncountability of the reals; definition of the P and NP classes; simple
demonstration of the halting problem

• Discrete probability: Finite probability spaces; conditional probability, independence,
Bayes' rule; random events; random integer variables; mathematical expectation

Total hours of SEEK coverage: 27
CMP.cf (5 core hours of 140) - Computer Science foundations
 CMP.cf.2 (5 core hours of 31) - Algorithms, Data Structures/Representation
FND.mf (19 core hours of 56) - Mathematical foundations
 FND.mf.2 (4 core hours of 9) - Basic Logic
 FND.mf.3 (5 core hours of 9) - Proof Techniques
 FND.mf.4 (0 core hours of 6) - Basic Counting
 FND.mf.5 (4 core hours of 5) - Graphs and Trees
 FND.mf.6 (6 core hours of 9) - Discrete Probability
MAA.md (3 core hours of 19) - Modeling

CCSE Public Draft 3.1 – 2/6/04 96

MA271 Statistics and Empirical Methods for Computing

This is a new course introduced as part of this Software Engineering volume, even though the
topics covered are not in the domain of software engineering per se. The need for this course is
motivated by a desire to teach basic probability and statistics in an applied manner that will be
seen as relevant to software engineering students. It may be possible to substitute a more generic
statistics course, but the experience of many educators is that students easily forget their
statistics background because they do not see how it is relevant to their chosen career. It is hoped
that this course will rectify that to some extent.

Course description:
Principles of discrete probability with applications to computing. Basics of descriptive statistics.
Distributions, including normal (Gaussian), binomial and Poisson. Least squared concept,
correlation and regression. Statistical tests most useful to software engineering: t-test, ANOVA
and chi-squared. Design of experiments and testing of hypotheses. Statistical analysis of data
from a variety of sources. Applications of statistics to performance analysis, reliability
engineering, usability engineering, cost estimation, as well as process control evaluation.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Make design and management decisions based on a good understanding of probability and

statistics

• Design and conduct experiments to evaluate hypotheses about software quality and process.

• Analyze data from a variety of sources.

• Appreciate the importance of empirical methods in software engineering.

Sample labs and assignments:
• Building spreadsheets using data gathered from experiments of various kinds, and using

native statistical functions in spreadsheets to assist in hypothesis testing.

• Use of statistics applications such as SAS or SPSS.

Additional teaching considerations:
• Some educators like to show the derivation of statistical techniques from first principles, and

spend much time in a statistics course discussing and proving theorems. We suggest that
material taught in this way tends to be readily forgotten by all but the most mathematically
inclined computing students, and is therefore often a waste of time. We suggest instead, that
statistics techniques be taught as ‘cookbook’ methods, although with enough of their
rationale explained so students can subsequently expand their knowledge. Using this
approach, students can in a later (optional) course be taught more of the mathematical
underpinnings of statistics and/or a wider variety of data analysis techniques.

• The use of spreadsheets, in addition to statistical applications is suggested, since all software
companies have spreadsheet software, but not all have, or are willing to obtain, the more
powerful, complex, and expensive statistics applications. Students will be more likely to
believe they can apply statistics later if they know how to do this using spreadsheets.

CCSE Public Draft 3.1 – 2/6/04 97

• This course could be linked to other SE courses being taught in parallel, for example SE212,
SE321, or SE323. Whether or not those courses are taught in parallel, they should also
provide exercises to reinforce the material learned in this course.

Total hours of SEEK coverage: 18
FND.mf (3 core hours of 56) - Mathematical foundations
 FND.mf.6 (3 core hours of 9) - Discrete Probability
FND.ef (15 core hours of 23) - Engineering foundations for software
 FND.ef.1 - Empirical methods and experimental techniques
 FND.ef.2 - Statistical analysis

CCSE Public Draft 3.1 – 2/6/04 98

Non-technical compulsory courses

In the following series of courses, total SEEK coverage in each course is far less than 40 hours,
so there is considerable freedom for institutions to tailor these courses to more closely fit their
needs.

NT272 Engineering Economics

Courses like this are widely taught in engineering faculties, particularly in North America. The
course presented below can be used in an engineering program for any type of engineering. It
could be tailored more specifically to the needs of software engineering.

Course description:
The scope of engineering economics; mesoeconomics; supply, demand, and production; cost-
benefit analysis and break-even analysis; return on investment; analysis of options; time value of
money; management of money: economic analysis, accounting for risk.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Analyze supply and demand for products.

• Perform simple break-even analyses

• Perform simple cost-benefit analyses.

• Analyze the economic effect of alternative investment decisions, marketing decisions, and
design decisions, considering the time value of money and potential risk.

Total hours of SEEK coverage: 13
FND.ef (2 core hours of 23) - Engineering foundations for software
 FND.ef.5 - Engineering design
FND.ec (10 core hours of 10) - Engineering economics for software
MGT.pp (1 core hour of 6) - Project planning

CCSE Public Draft 3.1 – 2/6/04 99

NT181 Group Dynamics and Communication

Course description:
Essentials of oral, written, and graphical communication for software engineers. Principles of
technical writing; types of documents and strategies for gathering information and writing
documents, including presentations. Appropriate use of tables, graphics, and references. How to
be convincing and how to express rationale for one’s decisions or conclusions. Basics of how to
work effectively with others; notion of what motivates people; concepts of group dynamics.
Principles of effective oral communication, both at the interpersonal level and when making
presentations to groups. Strategies for listening, persuasion, and negotiation.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Write clear, concise, and accurate technical documents following well-defined standards for

format and for including appropriate tables, figures, and references.

• Review written technical documentation to detect problems of various kinds

• Develop and deliver a good quality formal presentation.

• Negotiate basic agreements with peers.

• Participate in interactions with others in which they are able to get their point across, and are
also able to listen to and appreciate the points of others, even when they disagree, and are
able to convey to others that they have listened.

Additional teaching considerations:
• Some students will have poor writing skills, so one objective of this course should be to help

students improve those skills. However, it is suggested that remedial help in grammar,
sentence structure etc. should not be part of the main course, since it will waste the time of
those students who do not need it. Remedial writing help should, therefore, be available
separately for those who need it. The writing of all students should be very critically judged;
it should not be possible to pass this course unless the student learns to write well.

• Instructors should have students write several documents of moderate size, emphasizing
clarity, usefulness, and writing quality. It is suggested that complex document formats be
avoided.

• Students could be asked to write requirements, to describe how something works, or to
describe how to do something. These topics will best prepare students for the types of writing
they will need to do as a software engineer. The topics assigned should be interesting to
students, so that they feel more motivated: For example, they could be asked to describe a
game.

Total hours of SEEK coverage: 11
PRF.psy (3 core hours of 5) - Group dynamics / psychology
PRF.com (8 core hours of 10) - Communications skills
 MAA.rsd.1 - Requirements documentation basics

CCSE Public Draft 3.1 – 2/6/04 100

NT291 Professional Software Engineering Practice

Course description:
History of computing and software engineering. Principles of professional software engineering
practice and ethics. Societal and environmental obligations of the software engineer. Role of
professional organizations. Intellectual property and other laws relevant to software engineering
practice.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Make ethical decisions when faced with ethical dilemmas, with reference to general

principles of ethics as well as codes of ethics for engineering, computing, and software
engineering.

• Apply concern for safety, security, and human rights to engineering and management
decision-making.

• Understand basics of the history of engineering, computing, and software engineering.

• Describe and apply the laws that affect software engineers, including laws regarding
copyright, patents, and other intellectual property.

• Describe the effect of software engineering decisions on society, the economy, the
environment, their customers, their management, their peers, and themselves.

• Describe the importance of the various different professional societies relevant to software
engineering in the state, province or country, as well as internationally.

• Understand the role of standards and standards-making bodies in engineering and software
engineering.

• Understand the need for continual professional development as an engineer and a software
engineer.

Additional teaching considerations:
• It is suggested that this course be taught in part using presentations by guest speakers. For

example, there could be talks by an expert on ethics, a representative of a professional
society, an intellectual property expert, etc.

• Students should be asked to read and discuss articles relevant to the course from the popular,
trade, and academic press.

• Students should be asked to debate various ethical issues.

• Care should be taken to present both sides of certain issues. In particular, we feel that the
case both for and against the licensing of software engineers should be presented, since
respected leaders of the profession still have diametrically opposite views on this. Another
issue where it is important to present both sides include patenting of software. We believe it
is entirely acceptable for the instructor to present his or her ‘political’ opinions on these
issues as long as students are able to learn how the ‘other side’ thinks and are not penalized
for opposing the instructor’s views.

CCSE Public Draft 3.1 – 2/6/04 101

Total hours of SEEK coverage: 14
PRF.pr (13 core hours of 20) - Professionalism
 PRF.pr.1 - Accreditation, certification, and licensing
 PRF.pr.2 - Codes of ethics and professional conduct
 PRF.pr.3 - Social, legal, historical, and professional issues and concerns
 PRF.pr.4 - The nature and role of professional societies
 PRF.pr.5 - The nature and role of software engineering standards
 PRF.pr.6 - The economic impact of software
QUA.cc (1 core hour of 2) - Software quality concepts and culture
 QUA.cc.2 - Society's concern for quality
 QUA.cc.3 - The costs and impacts of bad quality

CCSE Public Draft 3.1 – 2/6/04 102

SE+CS introductory courses - first year start

SE101 Introduction to Software Engineering and Computing

This course is a first course in computing, taught with a software engineering emphasis. It is
designed to be taught along with SE102 as replacements for any of the CS101 and CS102
courses from the CCCS volume. The CS courses do teach software engineering basics; however,
the idea is that this course would start with the SE material, and teach all the material as a means
to the end of solving software engineering problems for customers.

Course Description:
Overview of software engineering: Systems; customers, users, and their requirements. General
principles of computing: Problem solving, abstraction, division of the system into manageable
components, reuse, simple interfaces. Programming concepts: Control constructs; expressions;
use of APIs; simple data including arrays and strings; classes and inheritance. Design concepts:
Evaluation of alternatives. Basics of testing.
Prerequisites: High school education with good grades and a sense of rigor and attention to detail
developed through science and mathematics courses.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Develop simple statements of requirements.

• Appreciate the advantage of alternative sets of requirements and designs for very simple
programs.

• Write small programs in some language.

• Systematically test and debug small programs.

Additional teaching considerations: Since this is a first course in computing, the challenge will
be to motivate students about software engineering before they know very much about
programming. One way to do this is to study simple programs from the outside (as black boxes),
looking at the features they provide and discussing how they could be improved. This needs to
be done, though, with sufficient academic rigor.

The course could be approached in two parallel streams (i.e., two mini-courses that are
synchronized). One stream looks at higher-level software engineering issues, while another
teaches programming.

Total hours of SEEK coverage: 35
CMP.cf (19 core hours of 140) - Computer Science foundations
 CMP.cf.1 (9 core hours of 39) - Programming Fundamentals
 CMP.cf.3 (2 core hours of 5) – Problem solving techniques
 CMP.cf.4 (1 core hour of 5) - Abstraction -- use and support for
 CMP.cf.5 (2 core hours of 20) - Computer organization
 CMP.cf.6 (1 core hour of 1) - Basic concept of a system
 CMP.cf.7 (1 core hour of 1) - Basic user-human factors

CCSE Public Draft 3.1 – 2/6/04 103

 CMP.cf.8 (1 core hour of 1) - Basic developer-human factors
 CMP.cf.9 (2 core hours of 12) - Programming language basics
CMP.ct (2 core hours of 20) - Construction technologies
CMP.tl (1 core hour of 4) - Construction Tools
FND.ef (2 core hours of 23) - Engineering foundations for software
 FND.ef.3 - Measuring individual's performance
 FND.ef.4 - Systems development
 FND.ef.5 - Engineering design
PRF.pr (2 core hours of 20) - Professionalism
MAA.tm (1 core hour of 12) - Types of models
MAA.rfd (2 core hours of 3) - Requirements fundamentals
MAA.er (1 core hour of 4) - Eliciting requirements
MAA.rsd (1 core hour of 6) - Requirements specification & documentation
DES.con (1 core hour of 3) - Software design concepts
DES.str (1 core hour of 6) - Software design strategies
DES.dd (1 core hour of 12) - Detailed design
VAV.tst (1 core hour of 21) - Testing

CCSE Public Draft 3.1 – 2/6/04 104

SE102 Software Engineering and Computing II

This course is the successor to SE101 for students following a software-oriented introductory
computing sequence

Course Description:
Requirements, design, implementation, reviewing, and testing of simple software that interacts
with the operating system, databases, and network, and that involves graphical user interfaces.
Use of simple data structures, such as stacks and queues. Effective use of the facilities of a
programming language. Design and analysis of simple algorithms, including those using
recursion. Use of simple design patterns such as delegation. Drawing simple UML class,
package, and component diagrams. Dealing with change: Evolution principles; handling
requirements changes; problem reporting and tracking.

Prerequisite: SE101

Learning objectives:
Upon completion of this course, students will have the ability to:
• Develop clear, concise, and sufficiently formal requirements for extensions to an existing

system, based on the true needs of users and other stakeholders

• Design software, so that it can be changed easily.

• Design simple algorithms with recursion.

• Analyze basic algorithms to determine their efficiency.

• Draw simple diagrams representing software designs.

• Write medium-sized programs, in teams.

• Develop simple graphical user interfaces.

• Conduct inspections of medium-sized programs.

Additional teaching considerations:
As with SE101, students need to be reminded regularly of the principles of software engineering.

Total hours of SEEK coverage: 36
CMP.cf (23 core hours of 140) - Computer Science foundations
 CMP.cf.1 (12 core hours of 39) - Programming Fundamentals
 CMP.cf.3 (3 core hours of 5) - Problem solving techniques
 CMP.cf.4 (1 core hour of 5) - Abstraction -- use and support for
 CMP.cf.9 (4 core hours of 12) - Programming language basics
 CMP.cf.10 (1 core hour of 10) - Operating system basics key concepts from CCCS
 CMP.cf.11 (1 core hour of 10) - Database basics
 CMP.cf.12 (1 core hour of 5) - Network communication basics
PRF.pr (1 core hour of 20) - Professionalism
MAA.md (1 core hour of 19) - Modeling
MAA.rv (1 core hour of 3) - Requirements validation

CCSE Public Draft 3.1 – 2/6/04 105

DES.str (1 core hour of 6) - Software design strategies
DES.dd (1 core hour of 12) - Detailed design
DES.nst (1 core hours of 3) - Design notations and support tools
VAV.fnd (1 core hour of 5) - V&V terminology and foundations
VAV.rev (1 core hour of 6) - Reviews
VAV.tst (2 core hours of 21) - Testing
VAV.par (1 core hour of 4) - Problem analysis and reporting
EVO.pro (1 core hour of 6) - Evolution processes

CCSE Public Draft 3.1 – 2/6/04 106

Software engineering core courses

SE200 Software Engineering and Computing III

This is a third course for students who have followed the sequence SE101 and SE102.

Course Description:
Software process; planning and tracking ones work. Analysis, architecture, and design of simple
client-server systems using UML, with an emphasis on class and state diagrams. Evaluating
designs. Implementing designs using appropriate data structures, frameworks, and APIs.

Prerequisite: SE102

Learning objectives:
• Upon completion of this course, students will have the ability to:

• Plan the development of a simple system.

• Measure and track their progress while developing software.

• Create good UML class and state diagrams.

• Implement systems of significant complexity.

Additional teaching considerations:
This course is a good place to start to expose students to moderately sized existing systems. They
can therefore learn and practice the essential skills of reading and understanding code written by
others.

In contrast with SE201, this course should balance SE learning with continued learning of
programming and basic computer science.

It is suggested that a core subset of UML be taught, rather than trying to cover all features.

Total hours of SEEK coverage: 38
CMP.cf (18 core hours of 140) - Computer Science foundations
 CMP.cf.1 (5 core hours of 39) - Programming Fundamentals
 CMP.cf.2 (6 core hours of 31) - Algorithms, Data Structures/Representation
 CMP.cf.4 (1 core hour of 5) - Abstraction -- use and support for
 CMP.cf.9 (6 core hours of 12) - Programming language basics
CMP.ct (3 core hours of 20) - Construction technologies
FND.ef (1 core hour of 23) - Engineering foundations for software
PRF.pr (2 core hours of 20) - Professionalism
MAA.md (1 core hour of 19) - Modeling
DES.con (2 core hours of 3) - Software design concepts
DES.str (1 core hour of 6) - Software design strategies
DES.ar (2 core hours of 9) - Architectural design
DES.hci (4 core hours of 12) - Human computer interface design
DES.ev (1 core hour of 3) - Design Evaluation

CCSE Public Draft 3.1 – 2/6/04 107

VAV.fnd (1 core hour of 5) - V&V terminology and foundations
VAV.rev (1 core hour of 6) - Reviews
PRO.imp (1 core hour of 10) - Process Implementation
MGT.con (1 core hour of 2) - Management concepts

SE201 Introduction to Software Engineering

This is a first course in software engineering for students who have taken CS101 and CS102.

Course description:
Principles of software engineering: Requirements, design and testing. Review of principles of
object orientation. Object oriented analysis using UML. Frameworks and APIs. Introduction to
the client-server architecture. Analysis, design and programming of simple servers and clients.
Introduction to user interface technology.
Prerequisite: CS102

Learning objectives
Upon completion of this course, students will have the ability to:
• Develop clear, concise, and sufficiently formal requirements for extensions to an existing

system, based on the true needs of users and other stakeholders

• Apply design principles and patterns while designing and implementing simple distributed
systems-based on reusable technology

• Create UML class diagrams which model aspects of the domain and the software architecture

• Create UML sequence diagrams and state machines that correctly model system behavior

• Implement a simple graphical user interfaces for a system

• Apply simple measurement techniques to software

• Demonstrate an appreciation for the breadth of software engineering

Suggested sequence of teaching modules:
1. Software engineering and its place as an engineering discipline
2. Review of the principles of object orientation
3. Reusable technologies as a basis for software engineering: Frameworks and APIs.

Introduction to client-server computing
4. Requirements analysis
5. UML class diagrams and object-oriented analysis; introduction to formal modeling using OCL
6. Examples of building class diagrams to model various domains
7. Design patterns (abstraction-occurrence, composite, player-role, singleton, observer,

delegation, façade, adapter, observer, etc.)
8. Use cases and user-centered design
9. Representing software behavior: Sequence diagrams, state machines, activity diagrams
10. General software design principles: Decomposition, decoupling, cohesion, reuse, reusability,

portability, testability, flexibility, etc.
11. Software architecture: Distributed architectures, pipe-and-filter, model-view-controller, etc.

CCSE Public Draft 3.1 – 2/6/04 108

12. Introduction to testing and project management

Sample labs and assignments:
• Evaluating the performance of various simple software designs

• Adding features to an existing system

• Testing a system to verify conformance to test cases

• Building a GUI for an application

• Numerous exercises building models in UML, particularly class diagrams and state machines

• Developing a simple set of requirements (to be done as a team) for some innovative client-
server application of very small size

• Implementing the above, using reusable technology to the greatest extent possible

Additional teaching considerations:
This course is a good place to start to expose students to moderately sized existing systems. With
such systems, they can learn and practice the essential skills of reading and understanding code
written by others.

It is assumed that students entering this course will have had little coverage of software
engineering concepts previously, but have had two courses that give them a very good
background in programming and basic computer science. The opposite assumptions are made for
SE200.

It is suggested that a core subset of UML be taught, rather than trying to cover all features.

Rather than OCL, instructors may choose to introduce a different formal modeling technique.

Total hours of SEEK coverage: 34
CMP.ct (4 core hours of 20) - Construction technologies
 CMP.ct.1 - API design and use
 CMP.ct.2 - Code reuse and libraries
 CMP.ct.3 - Object-oriented run-time issues
FND.ef (3 core hours of 23) - Engineering foundations for software
 FND.ef.1 - Empirical methods and experimental techniques
 FND.ef.4 - Systems development
 FND.ef.5 - Engineering design
PRF.pr (1 core hour of 20) - Professionalism
MAA.md (2 core hours of 19) - Modeling
 MAA.md.1 - Modeling principles
 MAA.md.2 - Pre & post conditions, invariants
 MAA.md.3 - Introduction to mathematical models and specification languages
MAA.tm (1 core hour of 12) - Types of models
MAA.rfd (1 core hour of 3) - Requirements fundamentals
MAA.er (1 core hour of 4) - Eliciting requirements
MAA.rsd (1 core hour of 6) - Requirements specification & documentation

CCSE Public Draft 3.1 – 2/6/04 109

 MAA.rsd.3 - Specification languages
MAA.rv (1 core hour of 3) - Requirements validation
DES.con (2 core hours of 3) - Software design concepts
DES.str (3 core hours of 6) - Software design strategies
DES.ar (2 core hours of 9) - Architectural design
DES.hci (1 core hour of 12) - Human computer interface design
DES.dd (2 core hours of 12) - Detailed design
DES.nst (1 core hour of 3) - Design notations and support tools
DES.ev (1 core hour of 3) - Design Evaluation
VAV.fnd (1 core hour of 5) - V&V terminology and foundations
VAV.rev (1 core hour of 6) - Reviews
VAV.tst (2 core hours of 21) - Testing
VAV.par (1 core hour of 4) - Problem analysis and reporting
PRO.imp (1 core hour of 10) - Process Implementation
MGT.con (1 core hour of 2) - Management concepts

SE211 Software Construction

This course is part of Core Software Engineering Package I; it fits into slot A in the curriculum
patterns.

Course Description:
General principles and techniques for disciplined low-level software design. BNF and basic
theory of grammars and parsing. Use of parser generators. Basics of language and protocol
design. Formal languages. State-transition and table-based software design. Formal methods for
software construction. Techniques for handling concurrency and inter-process communication.
Techniques for designing numerical software. Tools for model-driven construction. Introduction
to Middleware. Hot-spot analysis and performance tuning. Prerequisite: (SE201 or SE200),
CS103 and CS105.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Apply a wide variety of software construction techniques and tools, including state-based

and table-driven approaches to low-level design of software

• Design simple languages and protocols suitable for a variety of applications

• Generate code for simple languages and protocols using suitable tools

• Create simple formal specifications of low-level software modules, check the validity of
these specifications, and generate code from the specifications using appropriate tools

• Design simple concurrent software

• Analyze software to improve its efficiency, reliability, and maintainability

Suggested sequence of teaching modules:
1. Basics of formal languages; syntax and semantics; grammars; Backus Naur Form. Parsing;

regular expressions and their relationship to state diagrams

CCSE Public Draft 3.1 – 2/6/04 110

2. Lexical Analysis; tokens; more regular expressions and transition networks; principles of
scanners

3. Using tools to generate scanners; applications of scanners. Relation of scanners and compilers
4. Parsing concepts; parse trees; context free grammars, LL Parsing
5. Overview of principles of programming languages. Criteria for selecting programming

languages and platforms
6. Tools for automating software design and construction. Modeling system behavior with

extended finite state machines
7. SDL
8. Representing concurrency, and analyzing concurrent designs

Sample labs and assignments:
• Use of software engineering tools to create designs

• Use of parser generators to generate languages

Additional teaching considerations:
Students come to this course with a basic knowledge of finite state machines and concurrency;
this course should therefore cover more advanced material.

Total hours of SEEK coverage: 36
CMP.ct (10 core hours of 20) - Construction technologies
 CMP.ct.6 - Error handling, exception handling, and fault tolerance
 CMP.ct.7 - State-based and table driven construction techniques
 CMP.ct.8 - Run-time configuration and internationalization
 CMP.ct.9 - Grammar-based input processing
 CMP.ct.10 - Concurrency primitives
 CMP.ct.11 - Middleware
 CMP.ct.12 - Construction methods for distributed software
 CMP.ct.14 - Hot-spot analysis and performance tuning
CMP.tl (3 core hours of 4) - Construction Tools
CMP.fm (8 core hours of 8) - Formal construction methods
FND.mf (11 core hours of 56) - Mathematical foundations
 FND.mf.5 (1 core hour of 5) - Graphs and Trees
 FND.mf.7 (4 core hours of 4) - Finite State Machines, regular expressions
 FND.mf.8 (4 core hours of 4) - Grammars
 FND.mf.9 (2 core hours of 4) - Numerical precision, accuracy, and errors
MAA.md (4 core hours of 19) - Modeling

CCSE Public Draft 3.1 – 2/6/04 111

SE212 Software Engineering Approach to Human Computer Interaction

This course is part of Core Software Engineering Packages I and II; it fits into slot B in the
curriculum patterns.

Course Description:
Psychological principles of human-computer interaction. Evaluation of user interfaces. Usability
engineering. Task analysis, user-centered design, and prototyping. Conceptual models and
metaphors. Software design rationale. Design of windows, menus, and commands. Voice and
natural language I/O. Response time and feedback. Color, icons, and sound. Internationalization
and localization. User interface architectures and APIs. Case studies and project.
Prerequisite: SEG201 or SE200

Learning objectives:
Upon completion of this course, students will have the ability to:
• Evaluate software user interfaces using heuristic evaluation and user observation techniques

• Conduct simple formal experiments to evaluate usability hypotheses.

• Apply user centered design and usability engineering principles as they design a wide variety
of software user interfaces

Suggested sequence of teaching modules:
1. Background to human-computer interaction. Underpinnings from psychology and cognitive

science
2. More background. Evaluation techniques: Heuristic evaluation
3. More evaluation techniques: Videotaped user testing; cognitive walkthroughs
4. Task analysis. User-centered design
5. Usability engineering processes; conducting experiments
6. Conceptual models and metaphors
7. Designing interfaces: Coding techniques using color, fonts, sound, animation, etc.
8. Designing interfaces: Screen layout, response time, feedback, error messages, etc.
9. Designing interfaces for special devices. Use of voice I/O
10. Designing interfaces: Internationalization, help systems, etc. User interface software

architectures
11. Expressing design rationale for user interface design

Sample labs and assignments:
• Evaluation of user interfaces using heuristic evaluation

• Evaluation of user interfaces using videotaped observation of users

• Paper prototyping of user interfaces, then discussing design options in order to arrive at a
consensus design

• Writers-workshop for style critiquing of prototypes presented by others

• Implementation of a system with a significant user interface component using a rapid
prototyping environment

CCSE Public Draft 3.1 – 2/6/04 112

Additional teaching considerations:
• Some students naturally find it hard to relate to the needs of users, while others find the

material in this course so intuitive that they are overconfident in this course. Students should
be taught to obtain informed consent from users when involving them in the evaluation of
user interfaces.

• A strategy that works well for this course is to teach process issues during one lecture each
week, and design issues during another lecture each week, in effect running two courses in
parallel.

• When task analysis is discussed, it should be compared to use case analysis.

• The ‘writers workshop’ format works well for teaching design in this course. Small groups of
students present paper prototypes of their UI designs to the class. Other students in the class
then express what they like about the designs. Next, the other students provide constructive
criticism.

Total hours of SEEK coverage: 25
CMP.ct (1 core hour of 20) - Construction technologies
 CMP.ct.8 - Run-time configuration and internationalization
 CMP.tl.2 - GUI builders
FND.ef (3 core hours of 23) - Engineering foundations for software
PRF.psy (1 core hour of 5) - Group dynamics / psychology
MAA.md (4 core hours of 19) - Modeling
MAA.tm (1 core hour of 12) - Types of models
 MAA.rfd.5 - Analyzing quality
DES.hci (6 core hours of 12) - Human computer interface design
VAV.fnd (1 core hour of 5) - V&V terminology and foundations
 VAV.fnd.4 - Metrics & Measurement
VAV.rev (1 core hour of 6) - Reviews
 VAV.rev.3 - Inspections
 VAV.tst.9 - Testing across quality attributes
VAV.hct (6 core hours of 6) - Human computer user interface testing and evaluation
QUA.pda (1 core hour of 4) - Product assurance
 QUA.pda.6 - Assessment of product quality attributes

CCSE Public Draft 3.1 – 2/6/04 113

SE213 Design and Architecture of Large Software Systems

This course is part of Core Software Engineering Package II; it fits into slot A in the curriculum
patterns.

Course Description:
Modeling and design of flexible software at the architectural level. Basics of model-driven
architecture. Architectural styles and patterns. Middleware and application frameworks.
Configurations and configuration management. Product lines. Design using Commercial Off-
The-Shelf (COTS) software.
Prerequisites: (SE201 or SE200) and CS103

Learning objectives:
Upon completion of this course, students will have the ability to:
• Take requirements for simple systems and develop software architectures and high-level

designs

• Use configuration management tools effectively, and apply change management processes
properly

• Design simple distributed software

• Design software using COTS components

• Apply a wide variety of frameworks and architectures in designing a wide variety of software

• Design and implement software using several different middleware technologies

Additional teaching considerations:
Students will be taking this before coverage of low-level design. Students, therefore, need tools
and packages that allow them to implement their designs without much concern for low-level
details.

Total hours of SEEK coverage: 28
MAA.md (5 core hours of 19) - Modeling
MAA.tm (5 core hours of 12) - Types of models
DES.str (2 core hours of 6) - Software design strategies
DES.ar (5 core hours of 9) - Architectural design
EVO.pro (3 core hours of 6) - Evolution processes
 EVO.pro.1 - Basic concepts of evolution and maintenance
 EVO.pro.2 - Relationship between evolving entities
EVO.ac (2 core hours of 4) - Evolution Activities
MGT.con (1 core hour of 2) - Management concepts
MGT.pp (1 core hour of 6) - Project planning
MGT.cm (4 core hours of 5) - Software configuration management

CCSE Public Draft 3.1 – 2/6/04 114

SE221 Software Testing

This course is part of Core Software Engineering Package II; it fits into slot C in the curriculum
patterns.

Course Description:
Testing techniques and principles: Defects vs. failures, equivalence classes, boundary testing.
Types of defects. Black-box vs. Structural testing. Testing strategies: Unit testing, integration
testing, profiling, test driven development. State based testing; configuration testing;
compatibility testing; web site testing. Alpha, beta, and acceptance testing. Coverage criteria.
Test instrumentation and tools. Developing test plans. Managing the testing process. Problem
reporting, tracking, and analysis.

Prerequisites: SE201 or SE200

Learning objectives:
Upon completion of this course, students will have the ability to:
• Analyse requirements to determine appropriate testing strategies.

• Design and implement comprehensive test plans

• Apply a wide variety of testing techniques in an effective and efficient manner

• Compute test coverage and yield according to a variety of criteria

• Use statistical techniques to evaluate the defect density and the likelihood of faults.

• Conduct reviews and inspections.

Additional teaching considerations:
This course is intended to be 95% testing, with deep coverage of a wide variety of testing
techniques.

The course should build skill and experience in the student, preferably with production code.

Note that usability testing is covered in SE212.

Total hours of SEEK coverage: 23
MAA.rfd (1 core hour of 3) - Requirements fundamentals
 MAA.rfd.4 - Requirements characteristics
VAV.fnd (2 core hours of 5) - V&V terminology and foundations
VAV.rev (1 core hour of 6) - Reviews
VAV.tst (14 core hours of 21) - Testing
 VAV.tst.2 - Exception handling
VAV.par (3 core hours of 4) - Problem analysis and reporting
QUA.pda (2 core hours of 4) - Product assurance

CCSE Public Draft 3.1 – 2/6/04 115

SE311 Software Design and Architecture

This course is part of Core Software Engineering Package I; it fits into slot D in the curriculum
patterns.

Course Description:
An in-depth look at software design. Continuation of the study of design patterns, frameworks,
and architectures. Survey of current middleware architectures. Design of distributed systems
using middleware. Component based design. Measurement theory and appropriate use of metrics
in design. Designing for qualities such as performance, safety, security, reusability, reliability,
etc. Measuring internal qualities and complexity of software. Evaluation and evolution of
designs. Basics of software evolution, reengineering, and reverse engineering.
Prerequisites: SE211

Learning objectives:
Upon completion of this course, students will have the ability to:
• Apply a wide variety of design patterns, frameworks, and architectures in designing a wide

variety of software

• Design and implement software using several different middleware technologies

• Use sound quality metrics as objectives for designs, and then measure and assess designs to
ensure the objectives have been met

• Modify designs using sound change control approaches

• Use reverse engineering techniques to recapture the design of software

Suggested sequence of teaching modules:
1. In-depth study of design patterns, building on material learned previously.
2. Application of design patterns to several example applications
3. In-depth study of middleware architectures including COM, Corba, and .Net
4. Extensive case studies of real designs.
5. Basics of software metrics; measuring software qualities
6. Reengineering and reverse engineering techniques.

Sample labs and assignments:
• Building a significant project using one or more well known middleware architectures.

Additional teaching considerations:
Students will already have a knowledge of some basic design patterns; this course will cover
current pattern catalogs in significant detail, not just limited to the classic ‘Gang of Four’
patterns.

Total hours of SEEK coverage: 33
CMP.ct (3 core hours of 20) - Construction technologies
 CMP.ct.11 - Middleware
 CMP.ct.12 - Construction methods for distributed software

CCSE Public Draft 3.1 – 2/6/04 116

 CMP.ct.13 - Constructing heterogeneous systems
MAA.md (4 core hours of 19) - Modeling
MAA.tm.3 - Structure modeling
DES.str (2 core hours of 6) - Software design strategies
DES.ar (5 core hours of 9) - Architectural design
DES.dd (8 core hours of 12) - Detailed design
DES.nst (1 core hour of 3) - Design notations and support tools
DES.ev (1 core hour of 3) - Design Evaluation
EVO.pro (5 core hours of 6) - Evolution processes
EVO.ac (4 core hours of 4) - Evolution Activities

SE312 Low-Level Design of Software

This course is part of Core Software Engineering Package II; it fits into slot D in the curriculum
patterns.

Course Description:
Detailed software design and construction in depth. In-depth coverage of design patterns and
refactoring. Introduction to formal approaches to design. Analysis of designs based on internal
quality criteria. Performance and maintainability improvement. Reverse engineering. Disciplined
approaches to design change.

Prerequisite: SE213

Learning objectives:
Upon completion of this course, students will have the ability to:
• Apply a wide variety of software construction techniques and tools, including state-based

and table driven approaches to low-level design of software

• Use a wide variety of design patterns in the design of software

• Perform object-oriented design and programming with a high level of proficiency

• Analyze software in order to improve its efficiency, reliability, and maintainability.

• Modify designs using sound change control approaches

• Use reverse engineering techniques to recapture the design of software

Additional teaching considerations:
Students will have already learned a lot about high-level design and architecture. This course
covers low-level details.

Total hours of SEEK coverage: 26
CMP.ct (13 core hours of 20) - Construction technologies
CMP.tl (3 core hours of 4) - Construction Tools
CMP.fm (2 core hours of 8) - Formal construction methods
MAA.tm (2 core hours of 12) - Types of models
DES.dd (5 core hours of 12) - Detailed design

CCSE Public Draft 3.1 – 2/6/04 117

EVO.ac (1 core hour of 4) - Evolution Activities

SE313 Formal Methods in Software Engineering

This course is part of Core Software Engineering Package II; it fits into slot F in the curriculum
patterns.

Course Description:
Review of mathematical foundations for formal methods. Formal languages and techniques for
specification and design, including specifying syntax using grammars and finite state machines.
Analysis and verification of specifications and designs. Use of assertions and proofs. Automated
program and design transformation.

Prerequisite: SE312.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Create mathematically precise specifications and designs using languages such as OCL, Z,

etc.

• Analyze the properties of formal specifications and designs

• Use tools to transform specifications and designs

Total hours of SEEK coverage: 34
CMP.fm (6 core hours of 8) - Formal construction methods
FND.mf (13 core hours of 56) - Mathematical foundations
 FND.mf.5 (1 core hour of 5) - Graphs and Trees
 FND.mf.7 (4 core hours of 4) - Finite State Machines, regular expressions
 FND.mf.8 (4 core hours of 4) - Grammars
 FND.mf.9 (4 core hours of 4) - Numerical precision, accuracy, and errors
MAA.md (3 core hours of 19) - Modeling
 MAA.md.3 - Introduction to mathematical models and specification languages
MAA.tm (2 core hours of 12) - Types of models
MAA.tm.2 - Behavioral modeling
MAA.rsd (3 core hours of 6) - Requirements specification & documentation
 MAA.rsd.3 - Specification languages
MAA.rv (1 core hour of 3) - Requirements validation
DES.dd (3 core hours of 12) - Detailed design
DES.nst (1 core hour of 3) - Design notations and support tools
 DES.nst.6 - Formal design analysis
DES.ev (1 core hour of 3) - Design Evaluation
 DES.ev.2 - Evaluation techniques
EVO.ac (1 core hour of 4) - Evolution Activities
 EVO.ac.6 - Refactoring
 EVO.ac.7 - Program transformation

CCSE Public Draft 3.1 – 2/6/04 118

SE321 Software Quality Assurance

This course is part of Core Software Engineering Package I; it fits into slot C in the curriculum
patterns.

Course Description:
Quality: how to assure it and verify it, and the need for a culture of quality. Avoidance of errors
and other quality problems. Inspections and reviews. Testing, verification and validation
techniques. Process assurance vs. Product assurance. Quality process standards. Product and
process assurance. Problem analysis and reporting. Statistical approaches to quality control.
Prerequisite: SE201 or SE200

Learning objectives:
Upon completion of this course, students will have the ability to:
• Conduct effective and efficient inspections

• Design and implement comprehensive test plans

• Apply a wide variety of testing techniques in an effective and efficient manner

• Compute test coverage and yield, according to a variety of criteria

• Use statistical techniques to evaluate the defect density and the likelihood of faults

• Assess a software process to evaluate how effective it is at promoting quality

Suggested sequence of teaching modules:
1. Introduction to software quality assurance
2. Inspections and reviews
3. Principles of software validation
4. Software verification
5. Software testing
6. Specification based test construction techniques
7. White-box and grey-box testing
8. Control flow oriented test construction techniques
9. Data flow oriented test construction techniques
10. Cleanroom approach to quality assurance
11. Software process certification

Sample labs and assignments
• Use of automated testing tools

• Testing of a wide variety of software

• Application of a wide variety of testing techniques

• Inspecting of software in teams; comparison and analysis of results

CCSE Public Draft 3.1 – 2/6/04 119

Additional teaching considerations:
User interface testing with end-users is covered in SE212, so it should not be covered here.
However the use of test harnesses that work through the user interface is an appropriate topic.

The reason why testing is to be emphasized so much is not that other techniques are less
important, but because many other techniques (e.g., inspections) can more easily be learned on
the job, whereas testing material tends to require course-based learning to be mastered properly.

Total hours of SEEK coverage: 37
FND.mf (2 core hours of 56) - Mathematical foundations
 FND.mf.9 (2 core hours of 4) - Numerical precision, accuracy, and errors
VAV.fnd (2 core hours of 5) - V&V terminology and foundations
VAV.rev (1 core hour of 6) - Reviews
VAV.tst (14 core hours of 21) - Testing
VAV.par (3 core hours of 4) - Problem analysis and reporting
PRO.con (1 core hour of 3) - Process concepts
QUA.cc (1 core hour of 2) - Software quality concepts and culture
QUA.std (2 core hours of 2) - Software quality standards
QUA.pro (4 core hours of 4) - Software quality processes
QUA.pca (4 core hours of 4) - Process assurance
QUA.pda (3 core hours of 4) - Product assurance

CCSE Public Draft 3.1 – 2/6/04 120

SE322 Software Requirements Analysis

This course is part of Core Software Engineering Package I; it fits into slot E in the curriculum
patterns.

Course Description:
Domain engineering. Techniques for discovering and eliciting requirements. Languages and
models for representing requirements. Analysis and validation techniques, including need, goal,
and use case analysis. Requirements in the context of system engineering. Specifying and
measuring external qualities: performance, reliability, availability, safety, security, etc.
Specifying and analyzing requirements for various types of systems: embedded systems,
consumer systems, web-based systems, business systems, systems for scientists and other
engineers. Resolving feature interactions. Requirements documentation standards. Traceability.
Human factors. Requirements in the context of agile processes. Requirements management:
Handling requirements changes.
Prerequisites: SE201 or SE200.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Discover or elicit requirements using a variety of techniques

• Organize and prioritize requirements

• Apply analysis techniques such as needs analysis, goal analysis, and use case analysis

• Validate requirements according to criteria such as feasibility, clarity, freedom from
ambiguity, etc.

• Represent functional and non-functional requirements for different types of systems using
formal and informal techniques

• Specify and measure quality attributes

• Negotiate among different stakeholders in order to agree on a set of requirements

• Detect and resolve feature interactions

Suggested sequence of teaching modules:
1. Basics of software requirements engineering
2. Requirements engineering process: requirements elicitation, specification, analysis, and

management
3. Types of requirements: functional, non-functional, quality attributes
4. Requirements elicitation: identifying needs, goals, and requirements. Customers and other

stakeholders. Interviews and observations
5. Requirements specification: textual and graphical notations and languages (UML, User

Requirements notation). Techniques to write high-quality requirements. Documentation
standards

6. Requirements analysis: inspection, validation, completeness, detection of conflicts and
inconsistencies. Feature interaction analysis and resolution

7. Goal- and use-case-oriented modeling, prototyping, and analysis techniques

CCSE Public Draft 3.1 – 2/6/04 121

8. Requirements for typical systems: embedded systems, consumer systems, web-based systems,
business systems, systems for scientists and other engineers

9. Requirements management: traceability, priorities, changes, baselines, and tool support
10. Requirements negotiation and risk management
11. Integrating requirements analysis and software processes (including agile ones)

Sample labs and assignments:
• Writing good requirements.

• Analysis of a wide variety of existing software systems: Measuring qualities, and reverse-
engineering requirements.

• Interviewing users, and translating the results into prototypes iteratively

• Use of tools for managing requirements.

• Modeling, prototyping, and analyzing requirements with UML/URN tools

• Resolving feature interactions

Additional teaching considerations:
Those teaching this course will have to put special effort into motivating students who prefer the
technical and programming side of software engineering. It would be useful to give examples
where bad requirements have led to disasters (economic or physical). Interaction with real or
simulated customers would also be beneficial.

Total hours of SEEK coverage: 18
MAA.tm (9 core hours of 12) - Types of models
MAA.rfd (1 core hour of 3) - Requirements fundamentals
MAA.er (2 core hours of 4) - Eliciting requirements
MAA.rsd (4 core hours of 6) - Requirements specification & documentation
MAA.rv (1 core hour of 3) - Requirements validation
MAA.mgt (1 core hour of 3) - Requirements management

CCSE Public Draft 3.1 – 2/6/04 122

SE323 Software Project Management

This course is part of Core Software Engineering Package I; it fits into slot F in the curriculum
patterns.

Course Description:
Project planning, cost estimation, and scheduling. Project management tools. Factors influencing
productivity and success. Productivity metrics. Analysis of options and risks. Planning for
change. Management of expectations. Release and configuration management. Software process
standards and process implementation. Software contracts and intellectual property. Approaches
to maintenance and long-term software development. Case studies of real industrial projects.
Prerequisites: SE321 and SE322

Learning objectives:
Upon completion of this course, students will have the ability to:
• Develop a comprehensive project plan for a significant development effort

• Apply management techniques to projects that follow agile methodologies, as well as
methodologies involve larger-scale iterations or releases

• Effectively estimate costs for a project using several different techniques.

• Apply function point measurement techniques

• Measure project progress, productivity and other aspects of the software process

• Apply earned-value analysis techniques

• Perform risk management, dynamically adjusting project plans

• Use configuration management tools effectively, and apply change management processes
properly

• Draft and evaluate basic software licenses, contracts, and intellectual property agreements,
while recognizing the necessity of involving legal expertise

• Use standards in project management, including ISO 10006 (project management quality)
and ISO 12207 (software development process) along with the SEI’s CMM model

Suggested sequence of teaching modules:
1. Basic concepts of project management
2. Managing requirements
3. Software lifecycles
4. Software estimation
5. The project plan
6. Monitoring the project
7. Risk analysis
8. Managing quality
9. People problems

CCSE Public Draft 3.1 – 2/6/04 123

Sample labs and assignments:
• Use a commercial project management tool to assist with all aspects of software project

management. This includes creating Gantt, PERT, and Earned Value charts

• Make cost estimates for a small system using a variety of techniques

• Developing a project plan for a significant system

• Writing a configuration management plan

• Using change control and configuration management tools

• Evaluating a software contract or license

Total hours of SEEK coverage: 26
MAA.mgt (2 core hours of 3) - Requirements management
PRO.con (2 core hours of 3) - Process concepts
PRO.imp (9 core hours of 10) - Process Implementation
MGT.con (1 core hour of 2) - Management concepts
MGT.pp (3 core hours of 6) - Project planning
MGT.per (1 core hour of 2) - Project personnel and organization
MGT.ctl (4 core hours of 4) - Project control
MGT.cm (4 core hours of 5) - Software configuration management

CCSE Public Draft 3.1 – 2/6/04 124

SE324 Software Process and Management

This course is part of Core Software Engineering Package II; it fits into slot E in the curriculum
patterns.

Course Description:
Software processes: standards, implementation, and assurance. Project management with a focus
on requirements management and long-term evolution: Eliciting and prioritizing requirements,
cost estimation, planning and tracking projects, risk analysis, project control, change
management.

Prerequisites: SE201 or SE200, plus at least two additional software engineering
courses at the 2 level or higher.

Learning objectives:
Upon completion of this course, students will have the ability to:
• Elicit requirements using a variety of techniques

• Organize and prioritize requirements

• Design processes suitable for different types of project

• Assess a software process, to evaluate how effective it is at promoting quality

• Develop a comprehensive project plan for a significant development effort

• Measure project progress, productivity and other aspects of the software process

• Effectively estimate costs for development and evolution of a system using several different
techniques

• Perform risk management, dynamically adjusting project plans

• Use standards for quality, process and project management

• Perform root cause analysis, and work towards continual improvement of process

Total hours of SEEK coverage: 39
MAA.er (2 core hours of 4) - Eliciting requirements
MAA.rsd (1 core hour of 6) - Requirements specification & documentation
MAA.mgt (3 core hours of 3) - Requirements management
EVO.pro (2 core hours of 6) - Evolution processes
 EVO.pro.3 - Models of software evolution
 EVO.pro.4 - Cost models of evolution
PRO.con (3 core hours of 3) - Process concepts
PRO.imp (9 core hours of 10) - Process Implementation
QUA.cc (1 core hour of 2) - Software quality concepts and culture
QUA.std (2 core hours of 2) - Software quality standards
QUA.pro (4 core hours of 4) - Software quality processes
QUA.pca (4 core hours of 4) - Process assurance
QUA.pda (1 core hour of 4) - Product assurance

CCSE Public Draft 3.1 – 2/6/04 125

MGT.pp (2 core hours of 6) - Project planning
MGT.per (1 core hour of 2) - Project personnel and organization
MGT.ctl (4 core hours of 4) - Project control

Capstone project course

SE400 Software Engineering Capstone Project

The capstone project has been part of an engineering curriculum since the days when the stone
mason was asked to carve a decorated ‘capstone’ to signal his achievement of mastery of his
craft.

Course Description:
Development of significant software system, employing knowledge gained from courses
throughout the program. Includes development of requirements, design, implementation, and
quality assurance. Students may follow any suitable process model, must pay attention to quality
issues, and must manage the project themselves, following all appropriate project management
techniques. Success of the project is determined in large part by whether students have
adequately solved their customer’s problem.
Prerequisites: Completion of the level 3 courses in one of the curriculum patterns.

Sample deliverables:
Students should be expected to deliver one or several iterations of a software system, along with
all artifacts appropriate to the process model they are using. These would likely include a project
plan (perhaps updated regularly, and containing cost estimations, risk analysis, division of the
work into tasks, etc.), requirements (including use cases), architectural and design documents,
test plans, source code, and installable system.

Additional teaching considerations:
• It is anticipated that this course will not have formal lectures, although students would be

expected to attend progress presentations by other groups.

• It is suggested that students be required to have a ‘customer’ for whom they are developing
their software. This could be a company, a professor, or several people selected as
representing people in the potential market. The objective of the project would be to solve
the customer’s problem, and the customer would therefore assist the instructor in evaluating
the work.

• It is strongly suggested that students work in groups of at least two, and preferably three or
four, on their capstone project. Strategies must be developed to handle situations where the
contribution of team members is unequal.

• Some institutions may wish to divide this course into two parts, one per semester for
example. In such a case, it is suggested, however, that if students do not finish the project
(i.e., the second of the two courses), then they should have to start from the first course
again.

CCSE Public Draft 3.1 – 2/6/04 126

Total hours of SEEK coverage: 28
This material represents SEEK units that must be practiced in all projects. Beyond this, different
projects will exercise skills in different areas of SEEK.

CMP.ct (1 core hour of 20) - Construction technologies
PRF.psy (1 core hour of 5) - Group dynamics / psychology
PRF.com (2 core hours of 10) - Communications skills
PRF.pr (2 core hours of 20) - Professionalism
MAA.tm (1 core hour of 12) - Types of models
MAA.er (1 core hour of 4) - Eliciting requirements
MAA.rsd (1 core hour of 6) - Requirements specification & documentation
MAA.rv (1 core hour of 3) - Requirements validation
DES.str (1 core hour of 6) - Software design strategies
DES.ar (2 core hours of 9) - Architectural design
DES.hci (2 core hours of 12) - Human computer interface design
DES.dd (2 core hours of 12) - Detailed design
DES.nst (1 core hour of 3) - Design notations and support tools
DES.ev (1 core hour of 3) - Design Evaluation
VAV.rev (2 core hours of 6) - Reviews
VAV.tst (3 core hours of 21) - Testing
MGT.pp (2 core hours of 6) - Project planning
MGT.per (1 core hour of 2) - Project personnel and organization
MGT.cm (1 core hour of 5) - Software configuration management

CCSE Public Draft 3.1 – 2/6/04 127

Appendix B: Contributors and Reviewers

Education Knowledge Area Volunteers

Jonathan D. Addelston, UpStart Systems, U.S.
Roger Alexander, Colorado State University, U.S.
Niniek Angkasaputra, Fraunhofer Institute of Experimental Software Engineering, Germany
Mark A. Ardis, Rose-Hulman University, U.S.
Jocelyn Armarego, Murdoch University, Australia
Doug Baldwin, The State University of New York, Geneseo, U.S.
Earl Beede, Construx, U.S.
Fawsy Bendeck, University of Kaiserslautern, Germany
Mordechai Ben-Menachem, Ben-Gurion University, Israel
Robert Burnett, consultant, Brazil
Kai Chang, Auburn University, U.S.
Jason Chen, National Central University, Taiwan
Cynthia Cicalese, Marymount University, U.S.
Tony (Anthony) Cowling, University of Sheffield, U.K.
David Dampier, Mississippi State University, U.S.
Mel Damodaran, University of Houston, U.S.
Onur Demirors, Middle East Technical University, Turkey
Vladan Devedzic, University of Belgrade, Yugoslavia
Oscar Dieste, University of Alfonso X El Sabio, Spain
Dick Fairley Oregon Graduate Institute, U.S.
Mohamed E. Fayad, University of Nebraska, Lincoln, U.S.
Orit Hazzan, Israel Institute of Technology, Israel
Bill Hefley, consultant, U.S.
Peter Henderson, Butler University, U.S.
Joel Henry, University of Montana, U.S.
Jens Jahnke, University of Victoria, Canada
Stanislaw Jarzabek, National University of Singapore, Singapore
Natalia Juristo, Universidad Politecnica of Madrid, Spain
Umit Karakas, consultant, Turkey
Atchutarao Killamsetty, JENS SpinNet, Japan
Haim Kilov, Financial Systems Architects, U.S.
Moshe Krieger, University of Ottawa, Canada
Hareton Leung, Hong Kong Polytechnic University, Hong Kong
Marta Lopez, Fraunhofer Institute of Experimental Software Engineering, Germany
Mike Lutz, Rochester Institute of Technology, U.S.
Paul E. MacNeil, Mercer University, U.S.
Mike McCracken, Georgia Institute of Technology, U.S.
James McDonald, Monmouth University, U.S.
Emilia Mendes, University of Auckland, New Zealand
Luisa Mich, University of Trento, Italy
Ana Moreno, Universidad Politecnica of Madrid, Spain
Traian Muntean, University of Marseilles, France

CCSE Public Draft 3.1 – 2/6/04 128

Keith Olson, Utah Valley State College, U.S.
Michael Oudshoorn, University of Adelaide, Australia
Dietmar Pfahl, Fraunhofer Institute of Experimental Software Engineering, Germany
Mario Piattini, University of Castilla-La Mancha, Spain
Francis Pinheiro, University of Brazil, Brazil
Valentina Plekhanova, University of Sunderland, U.K.
Hossein Saiedian, University of Kansas, U.S.
Stephen C. Schwarm, EMC, U.S.
Peraphon Sophatsathit, Chulalongkorn University, Thailand
Jennifer S. Stuart, Construx, U.S.
Linda T. Taylor, Taylor & Zeno Systems, U.S.
Richard Thayer, California State University, Sacramento, U.S.
Jim Tomayko, Carnegie Melon University, U.S.
Massood Towhidnejad, Embry-Riddle University, U.S.
Joseph E. Urban, Arizona State University, U.S.
Arie van Deursen, National Research Institute for Mathematics & Computer Science,
Netherlands
Sira Vegas, University of Madrid, Spain
Bimlesh Wadhwa, National University of Singapore, Singapore
Yingxu Wang, University of Calgary, Canada
Mary Jane Willshire, University of Portland, U.S.
Mansour Zand, University of Nebraska, Omaha, U.S.
Jianhan Zhu, University of Ulster, U.K.

CCSE SEEK Workshop Attendees

Earl Beede, Construx, U.S.
Pierre Bourque, University of Quebec
David Budgen, Keele University, U.K.
Kai Chang, Auburn University, U.S.
Jorge L. Díaz-Herrera, Rochester Institute of Technology, U.S.
Frank Driscoll, Mitre Cooperation, U.S.
Steve Easterbrook, University of Toronto, Canada
Dick Fairley, Oregon Graduate Institute, U.S.
Peter Henderson, Butler University, U.S.
Thomas B. Hilburn, Embry-Riddle University, U.S.
Tom Horton, University of Virginia, U.S.
Cem Kaner, Florida Institute of Technology, U.S.
Haim Kilov, Financial Systems Architects, U.S.
Gideon Kornblum, Getronics, Netherlands
Rich LeBlanc, Georgia Institute of Technology, U.S.
Timothy C. Lethbridge, University of Ottawa, Canada
Bill Marion, Valparaiso University, U.S.
Yoshihiro Matsumoto, Musashi Institute of Technology, Japan
Mike McCracken, Georgia Institute of Technology, U.S.
Andrew McGettrick, University of Strathclyde, U.K.
Susan Mengel, Texas Tech University, U.S.

CCSE Public Draft 3.1 – 2/6/04 129

Traian Muntean, University of Marseilles, France
Keith Olson, Utah Valley State College, U.S.
Allen Parrish, University of Alabama, U.S.
Ann Sobel, Miami University, U.S.
Jenny Stuart, Construx, U.S.
Linda T. Taylor, Taylor & Zeno Systems, U.S.
Barrie Thompson, University of Sunderland, U.K.
Richard Upchurch, University of Massachussetts, U.S.
Frank H. Young, Rose-Hulman University, U.S.

SEEK Internal Reviewers

Barry Boehm, University of Southern California, U.S.
Kai H. Chang, Auburn University, U.S.
Jason Jen-Yen Chen, National Central University, Taiwan
Tony Cowling, University of Sheffield, U.K.
Vladan Devedzic, University of Belgrade, Yugoslavia
Laura Dillon, Michigan State University, U.S.
Dennis J. Frailey, Raytheon, U.S.
Peter Henderson, Butler University, U.S.
Watts Humphrey, Software Engineering Institute, U.S.
Haim Kilov, Financial Systems Architects, U.S.
Hareton Leung, Hong Kong Polytechnic University, Hong Kong
Yoshihiro Matsumoto, Information Processing Society, Japan
Bertrand Meyer, ETH, Zurich
Luisa Mich, University of Trento, Italy
James W. Moore, Mitre, U.S.
Hausi Muller, University of Victoria, Canada
Peter G. Neuman, SRI International, U.S.
David Notkin, University of Washington, U.S.
David Parnas, McMaster University, Canada
Dietmar Pfahl, Fraunhofer Institute of Experimental Software Engineering, Germany
Mary Shaw, Carnegie Mellon University, U.S.
Ian Sommerville, Lancaster University, U.K.
Peraphon Sophatsathit, Chulalongkorn University, Thailand
Steve Tockey, Construx Software, U.S.
Massood Towhidnejad, Embry-Riddle University, U.S.
Leonard Tripp, Boeing Sha red Services, U.S.

SEEK External Reviewers

James P. Alstad, Hughes Space and Communications Company, USA
Niniek Angkasaputra, Fraunhofer Institute for Experimental SE, Germany
Hernan Astudillo, Financial Systems Architects, USA
Donald J. Bagert, Rose-Hulman Institute of Technology, USA
Mario R. Barbacci, Software Engineering Institute, USA
 Ilia Bider, IbisSoft AB, Sweden

CCSE Public Draft 3.1 – 2/6/04 130

Grady Booch, Rational Corp, USA
Jurgen Borstler, Umeå University, Sweden
Pierre Bourque, Ecole de Technologie Superieure, Montreal, Canada
David Budgen, Keele University, UK
Joe Clifton, University of Wisconsin - Platteville, USA
Kendra Cooper, The University of Texas at Dallas, USA
Tony Cowling, University of Sheffield, UK
Vladan Devedzic, University of Belgrade, Yogoslavia
Rick Duley, Edith Cowan University, Australia
Robert Dupuis, Universite de Quebec à Monteal, Canada
Juan Garbajosa, Universidad Politecnica de Madrid, Spain
Robert L. Glass, Indiana University, USA
Orit Hazzan, Technion -- Israel Institute of Technology, Israel
Hui Huang, National Institute of Standards and Technology, USA
IFIP Working Group 2.9
Joseph Kasser, University of South Australia
Khaled Khan, University of Western Sydney, Australia
Peter Knoke, University of Alaska, Fairbanks, USA
Gideon Kornblum, CManagement bv, Netherlands
Claude Laporte, Ecole de Technologie Superieure, Montreal, Canada
Ansik Lee, Texas Instruments, USA
Hareton Leung, Hong Kong Polytechnic University, Hong Kong
Grace Lewis, Software Engineering Institute, USA
Michael Lutz, Rochester Institute of Technology, USA
Andrew Malton, University of Waterloo, Canada
Nikolai Mansurov, KLOCwork Inc., Ottawa, Canada
Esperanza Marcos, Rey Juan Carlos University, Spain
Pat Martin, Florida Institute of Technology, USA
Kenneth L. Modesitt, Indiana University - Purdue University Fort Wayne, USA
Ibrahim Mohamed, Universiti Kebangsaan, Malaysia
James Moore, Mitre Corporation, USA
Keith Paton, Independent consultant, Montreal, Canada
Pedagogy Focus Group Volunteers
Valentina Plekhanova, University of Sunderland, UK
Steve Roach, University of Texas at El Paso, USA
Francois Robert, Ecole de Technologie Superieure, Montreal, Canada
Robert C. Seacord, Software Engineering Institute, USA
Peraphon Sophatsathit, Chulalongkorn University, Thailand
Witold Suryn, Ecole de Technologie Superieure, Montreal, Canada
Sylvie Trudel, Ecole de Technologie Superieure, Montreal, Canada
Hans van Vliet, Vrije Universiteit Amsterdam, Netherlands
Frank H. Young, Rose-Hulman Institute of Technology, USA
Zdzislaw Zurakowski, Institute of Power Systems Automation, Poland

CCSE Public Draft 3.1 – 2/6/04 131

CCSE Pedagogy volunteers:

Jonathan Addelston, USA
Donald Bagert, Rose-Hulman Institute of Technology, USA
Jürgen Börstler, Umea Universitet, Sweden
David Budgen, Keele University, United Kingdom
Joe Clifton, University of Wisconsin, Plattsburgh, USA
Kendra Cooper, University of Texas, Dallas, USA
Vladan Devedzic, University of Belgrade, Yugoslavia
Rick Duley, Perth, Western Australia
Garth Glynn, University of Brighton, UK
Elizabeth Hawthorne, Union County College, USA
Orit Hazzan, Technion, Israel
Justo Hidalgo, Universidad Antonio de Nebrija, Spain
M. Umit Karakas, Turkey
Khaled Khan, University of Western Sydney, Australia
Yoshihiro Matsumoto, ASTEM Research Institute of Kyoto, Japan
Pat McGee, Florida Institute of Technology
Andrew McGettrick, University of Strathclyde, USA
Bruce Maxim, University of Michigan, USA
Ken Modesitt, Indiana University, USA
Steve Roach, University of Texas at El Paso, USA
Anthony Ruocco, Roger Williams University, USA
Peraphon Sophatsathit, Chulalongkorn University, Thailand
Barrie Thompson, University of Sunderland, UK
Yingxu Wang, University of Calgary, Canada
Frank H. Young, Rose-Hulman Institute of Technology, USA

Reviewers of CCSE Drafts:

Robert L. Ashenhurst, Graduate School of Business, University of Chicago, USA
Donald Bagert, Rose-Hulman Institute of Technology, USA
Bruce H. Barnes, USA
Larry Bernstein , Stevens Institute of Technology- Computer Science, USA
Vincent Chiew, University of Calgary / Axis Cogni-Solve Ltd., Canada
Tony Cowling, University of Sheffield, UK
Deepak Dahiya, Institute for Integrated Learning in Management, India
Wes Doonan, Movaz Networks Inc., USA
Helen M Edwards, University of Sunderland, UK
Matthias Felleisen, Northeastern University, USA
Maurizio Fenati, Micron Technology Italia, Italy
Robert L. Glass, Computing Trends, USA
Garth Glynn, University of Brighton, UK
William Griswold, University of California, San Diego, USA
Duncan Hall, EDS (NZ); CPEng, IntPE, MIPENZ; SMIEEE; ACM
Rob Hasker, University of Wisconsin - Platteville, USA
Jonathan Hodgson, Saint Joseph's University, USA

CCSE Public Draft 3.1 – 2/6/04 132

Vladan Jovanovic, Georgia Southern University, USA
Cem Kaner, Florida Institute of Technology, USA
Pete Knoke, Univ of Alaska, Fairbanks, USA
Tim H. Lin, ECE Department, Cal Poly Pomona, USA
Michael Lutz, Rochester Institute of Technology, USA
Dino Mandrioli, Politecnico di Milano, Italy
Luisa Mich, University of Trento, Italy
Ivan Mistrik, Fraunhofer IPSI, Germany
Carl J. Mueller, USA
Volodymyr Pavlov, eLine Software, Inc., Ukraine
David Rine, George Mason University, USA
Andrey A.Terekhov, Microsoft, USA
John Walz, Software Quality Consultant, USA
Michael Wing,Vandyke Software, USA
Tony Wasserman, Software Methods and Tools, USA

Additional volunteers that participate in reviews of subsequent CCSE drafts and other activities
will be added later.

