

Computing Curricula -- Software Engineering Volume

Final Draft of the
Software Engineering Education Knowledge (SEEK)

April 30, 2003

Edited by
Ann E.K. Sobel

CCSE Knowledge Area Chair

 2

Table of Contents
Objectives and Guiding Principles of CCSE .. 3

CCSE Principles.. 3
Curriculum Outcomes... 5

Process of Determining the SEEK .. 5
Knowledge Areas, Units, and Topics ... 6

Core Material .. 7
Unit of Time.. 7

Relationship of the SEEK to the Curriculum.. 8
Selection of Knowledge Areas.. 8
SE Education Knowledge Areas... 9

Computing Essentials.. 9
Description.. 9
Units and Topics ... 10

Mathematical & Engineering Fundamentals .. 11
Description.. 11
Units and Topics ... 11

Professional Practice ... 12
Description.. 12
Units and Topics ... 12

Software Modeling & Analysis .. 13
Description.. 13
Units and Topics ... 13

Software Design.. 15
Description.. 15
Units and Topics ... 15

Software Verification and Validation... 16
Description.. 16
Units and Topics ... 16

Software Evolution ... 18
Description.. 18
Units and Topics ... 18

Software Process... 18
Description.. 18
Units and Topics ... 18

Software Quality ... 19
Description.. 19
Units and Topics ... 19

Software Management .. 20
Description.. 20
Units and Topics ... 20

Systems and Application Specialties .. 21
Specialties and Their Related Topics.. 22

Appendix A... 23
Appendix B... 24
Appendix C ... 25

 3

Appendix D... 26
Appendix E ... 27

Objectives and Guiding Principles of CCSE
In the fall of 1998, the Educational Activities Board of the IEEE Computer Society and

the ACM Education Board appointed representatives to a joint task force whose mission was to
perform a major review of curriculum guidelines for undergraduate programs in computing.
This activity, named Computing Curricula, and their corresponding final reports, which are listed
as volumes II-V for the areas of Computer Science, Computer Engineering, Software
Engineering, and Information Systems, are in varying stages of completion. The effort to create
the software engineering volume is referred to as Computing Curricula Software Engineering
(CCSE).
 The CCSE steering committee is under the guidance and direction of both the IEEE
Computer Society and the Association for Computing Machinery (see Appendix A for
membership). The steering committee contains members whose mission is to guide the
construction and detailing of the educational knowledge areas, guide the partitioning of these
topics into a variety of academic classification schemes and implementations, and oversee the
structure and content of the volume. Other members serve as representatives to the views and
perspectives of related professional groups: namely, the ACM, the ACM’s software engineering
special interest group, the two-year and community colleges subgroup of the ACM Educational
Board, the Australian Computer Society, the British Computer Society, and the Information
Processing Society of Japan. As demonstration of the steering committee's commitment to
generate an international curriculum, several international representatives also serve as members.
In its entirety, the membership of the steering committee represents the countries of Australia,
Canada, Israel, Japan, the United Kingdom, and the United States. The steering committee also
seeks guidance from an advisory board.

CCSE Principles
The steering committee has articulated the following principles to guide our work:

1. Computing is a broad field that extends well beyond the boundaries of any one computing
discipline. CCSE concentrates on the knowledge and pedagogy associated with a software
engineering curriculum. Where appropriate, it will share or overlap with material contained in
other Computing Curriculum reports and will offer guidance on its incorporation into other
disciplines.

2. Software Engineering draws its foundations from a wide variety of disciplines. Undergraduate
study of software engineering relies on many areas in computer science for its theoretical and
conceptual foundations, but it also requires students to utilize concepts from a variety of other
fields, such as mathematics, engineering and project management. All software engineering
students must learn to integrate theory and practice, to recognize the importance of abstraction
and modeling, to be able to acquire special domain knowledge beyond the computing discipline
for the purposes of supporting software development in specific domains of application, and to
appreciate the value of good engineering design.

 4

3. The rapid evolution and the professional nature of software engineering require an ongoing
review of the corresponding curriculum. The professional associations in this discipline must
establish an ongoing review process that allows individual components of the curriculum
recommendations to be updated on a recurring basis. Also, because of the special professional
responsibilities of engineers to the public, it is important that the curriculum guidance support
and promote effective external assessment and accreditation of software engineering programs.

4. Development of a software engineering curriculum must be sensitive to changes in technology,
new developments in pedagogy, and the importance of lifelong learning. In a field that evolves as
rapidly as software engineering, educational institutions must adopt explicit strategies for
responding to change. Institutions, for example, must recognize the importance of remaining
abreast of well-established progress in both technology and pedagogy, subject to the constraints
of available resources. Software engineering education, moreover, must seek to prepare students
for lifelong learning that will enable them to move beyond today's technology to meet the
challenges of the future.

5. CCSE must go beyond knowledge elements to offer significant guidance in terms of individual
curriculum components. The CCSE curriculum models should assemble the knowledge elements
into reasonable, easily implemented learning units. Articulating a set of well-defined models will
make it easier for institutions to share pedagogical strategies and tools. It will also provide a
framework for publishers who provide the textbooks and other materials.

6. CCSE must support the identification of the fundamental skills and knowledge that all
software engineering graduates must possess. Where appropriate, CCSE must help define the
common themes of the discipline and ensure that all undergraduate program recommendations
include this material.

7. Guidance on software engineering curricula must be based on an appropriate definition of
software engineering knowledge. The description of this knowledge should be concise,
appropriate for undergraduate education, and it should use the work of previous studies on the
software engineering body of knowledge. A core set of required topics, from this description,
must be specified for all undergraduate software engineering degrees. The core should have
broad acceptance by the software engineering education community. Coverage of the core will
start with the introductory courses, extend throughout the curriculum, and be supplemented by
additional courses that may vary by institution, degree program, or individual student.

8. CCSE must strive to be international in scope. Despite the fact that curricular requirements
differ from country to country, CCSE is intended to be useful to computing educators throughout
the world. Where appropriate, every effort is being made to ensure that the curriculum
recommendations are sensitive to national and cultural differences so that they will be widely
applicable throughout the world. The involvement by national computing societies and
volunteers from all countries will be actively sought and welcomed.

9. The development of CCSE must be broadly based. To be successful, the process of creating
software engineering education recommendations must include participation from the many
perspectives represented by software engineering educators and by industry, commerce, and
government professionals.

 5

10. CCSE must include exposure to aspects of professional practice as an integral component of
the undergraduate curriculum. The education of all software engineering students must include
student experiences with the professional practice of software engineering. The professional
practice of software engineering encompasses a wide range of issues and activities including
problem solving, management, ethical and legal concerns, written and oral communication,
working as part of a team, and remaining current in a rapidly changing discipline.

11. CCSE must include discussions of strategies and tactics for implementation, along with high-
level recommendations. Although it is important for CCSE to articulate a broad vision of
software engineering education, the success of any curriculum depends heavily on
implementation details. CCSE must provide institutions with advice on the practical concerns of
setting up a curriculum.

Curriculum Outcomes
As a first step in SE curriculum guidance the steering committee has developed the

following set of outcomes for an undergraduate curriculum in software engineering:

Graduates of an undergraduate SE program must be able to:

1. Work as part of a team to develop and deliver executable artifacts.

2. Understand the process of determining client needs and translating them to software
requirements.

3. Reconcile conflicting objectives, finding acceptable compromises within limitations of
cost, time, knowledge, existing systems, and organizations.

4. Design appropriate solutions in one or more application domains using engineering
approaches that integrate ethical, social, legal, and economic concerns.

5. Understand and be able to apply current theories, models, and techniques that provide a
basis for software design, development, implementation and verification.

6. Negotiate, work effectively, provide leadership where necessary, and communicate well
with stakeholders in a typical software development environment.

7. Learn new models, techniques, and technologies as they emerge.

Process of Determining the SEEK
The development model chosen for determining CCSE was based on the model used to

construct the Computer Science Volume (CCCS). Development of the CCSE volume has been
divided into two groups: an Education Knowledge Area Group and a Pedagogy Focus Group.
The education knowledge area group is responsible for defining and documenting a software
engineering education body of knowledge appropriate for guiding the development of
undergraduate software engineering curricula (see Appendix B for list). This body of knowledge
is called Software Engineering Education Knowledge or SEEK. The pedagogy focus group is
responsible for using SEEK to formulate guidance for pedagogy as well as course and
curriculum design to support undergraduate software engineering degree programs.

 6

The initial selection of the SEEK areas was based on the SoftWare Engineering Body Of
Knowledge (SWEBOK) knowledge areas and multiple discussions with dozens of SEEK area
volunteers. The SEEK area volunteers were divided into groups representing each individual
SEEK area where each group contained roughly seven volunteers. These groups were assigned
the task of providing the details of the units that compose a particular educational knowledge
area and the further refinement of these units into topics. To facilitate their work, references to
existing related software engineering body of knowledge efforts (e.g. SWEBOK, CSDP Exam,
and SEI curriculum recommendations) and a set of templates for supporting the generation of
units and topics were provided.

After the volunteer groups generated an initial draft of their individual education
knowledge area details, the steering committee held a face-to-face forum that brought together
education knowledge and pedagogy area volunteers to iterate over the individual drafts and
generate an initial draft of the SEEK (see Appendix C for attendee list). This workshop held
with this particular goal mirrored a similar overwhelmingly successful workshop held by CCCS
at this very point in their development process. Once the content of the education knowledge
areas were stabilized, topics were identified to be core or elective. Topics were also labeled with
one of three Bloom's taxonomy's levels of educational objectives; namely, knowledge,
comprehension, or application. Only these three levels of learning were chosen from Bloom's
taxonomy since they represent what knowledge may be reasonably learned during an
undergraduate education.

The workshop resulted in a complete internal draft of SEEK. The steering committee then
arranged for a review of the internal draft by selected experts in the field, the advisory industrial
council, and the knowledge area volunteers (see Appendix D for list). After this review was
complete, the steering committee studied all reviewer comments and used them to revise the
internal draft version of the SEEK. This work resulted in a public draft version of the SEEK.
The steering committee has made this version of the SEEK available to the public and is
soliciting reviews of it by those interested in undergraduate software engineering education.

After the completion of the public reviews of this document, the steering committee
iterated over the reviewer comments to further refine and improve the contents of the SEEK. The
public draft version was used at the start of the development of pedagogy, courses, and curricula.
The final version was included in the first draft version of the CCSE Volume.

Knowledge Areas, Units, and Topics
Knowledge is a term used to describe the whole spectrum of content for the discipline:

information, terminology, artifacts, data, roles, methods, models, procedures, techniques,
practices, processes, and literature. The SEEK is organized hierarchically into three levels. The
highest level of the hierarchy is the education knowledge area, representing a particular sub-
discipline of software engineering that is generally recognized as a significant part of the body of
software engineering knowledge that an undergraduate should know. Knowledge areas are high-
level structural elements used for organizing, classifying, and describing software engineering
knowledge. Each area is identified by an abbreviation, such as PRF for professional practices and
is represented in this document with the color orange. Each area is broken down into smaller
divisions called units, which represent individual thematic modules within an area. Adding a two
or three letter suffix to the area identifies each unit; as an example, PRF.com is a unit on
communication skills. Units are represented in this document with the color yellow. Each unit is

 7

further subdivided into a set of topics, which are the lowest level of the hierarchy. Topics are
represented with either the color teal or white.

Core Material
In determining the SEEK, the steering committee recognizes that software engineering,

as a discipline, is relatively young in its maturation and common agreement on definition of an
education body of knowledge is evolving. The SEEK developed and presented in this document
is based on a variety of previous studies and commentaries on the recommended content for the
discipline. It was specially designed to support the development of undergraduate software
engineering curricula, and therefore, does not include all the knowledge that would exist in a
more generalized body of knowledge representation. The steering committee has therefore
sought to define a core consisting of the essential material that professionals teaching software
engineering agree is necessary for anyone to obtain an undergraduate degree in this field. By
insisting on a broad consensus in the definition of the core, the steering committee hopes to keep
the core as small as possible, giving institutions the freedom to tailor the elective components of
the curriculum in ways that meet their individual needs. Material offered as part of an
undergraduate program that falls outside the core is considered to be elective. Core topics are
represented with the color teal and elective topics are represented with no color (white).

The following points should be emphasized to clarify the relationship between the SEEK
and the steering committee's ultimate goal of providing undergraduate software engineering
curriculum recommendations.

• The core is not a complete curriculum. Because the core is defined as minimal, it does not,

by itself, constitute a complete undergraduate curriculum. Every undergraduate program
must include additional elective units from the body of knowledge, although this document
does not define what those units will be.

• Core units are not necessarily limited to a set of introductory courses taken early in the

undergraduate curriculum. Although many of the units defined as core are indeed
introductory, there are also some core units that clearly must be covered only after students
have developed significant background in the field. For example, topics in such areas as
project management, requirements elicitation, and abstract high- level modeling may require
knowledge and sophistication that lower-division students do not possess. Similarly,
introductory courses may include elective units alongside the coverage of core material. The
designation core simply means required and says nothing about the level of the course in
which it appears.

Unit of Time
The SEEK must define a metric that establishes a standard of measurement in order to

judge the actual amount of time required to cover a particular unit. Choosing such a metric was
quite difficult for the steering committee because no standard measure is recognized throughout
the world. For consistency with the earlier curriculum reports, namely the other related
computing curricula volumes to this effort, the task force has chosen to express time in hours .
An hour corresponds to the actual in-class time required to present the material in a traditional
lecture-oriented format (referred to in this document as contact hours). To dispel any potential

 8

confusion, however, it is important to underscore the following observations about the use of
lecture hours as a measure:

• The steering committee does not seek to endorse the lecture format. Even though we have

used a metric that has its roots in a classical, lecture-oriented format, the steering committee
believes that there are other styles—particular given recent improvements in educational
technology—that can be at least as effective. For some of these styles, the notion of hours
may be difficult to apply. Even so, the time specifications should at least serve as a
comparative measure, in the sense that a 5-hour unit will presumably take roughly five times
as much time to cover as a 1-hour unit, independent of the teaching style.

• The hours specified do not include time spent outside of class. The time assigned to a unit

does not include the instructor’s preparation time or the time students spend outside of class.
As a general guideline, the amount of out-of-class work is approximately three times the in-
hours (3 in class and 9 outside).

• The hours listed for a unit represent a minimum level of coverage. The time measurements

assigned for each unit should be interpreted as the minimum amount of time necessary to
enable a student to perform the learning objectives for that unit. It is always appropriate to
spend more time on a unit than the mandated minimum.

Relationship of the SEEK to the Curriculum
The SEEK does not represent the curriculum, but rather provides the foundation for the

design, implementation and delivery of the educational units that make up a software engineering
curriculum. Other chapters of the CCSE Volume provide guidance and support on how to use the
SEEK to develop a curriculum. In particular, the organization and content of the knowledge
areas and knowledge units should not be deemed to imply how the knowledge should be
organized into education units or activities. For example, the SEEK does not advocate a
sequential ordering of the KAs (1st CMP, 2nd FND, 3rd PRF, etc.). Nor does it suggest how
topics and units should be combined into education units. Furthermore, the SEEK is not intended
to purport any special curriculum development methodology (waterfall, incremental, cyclic,
etc.).

Selection of Knowledge Areas
 The initial selection of the SEEK areas was based on the SoftWare Engineering Body Of
Knowledge (SWEBOK) knowledge areas and multiple discussions with dozens of SEEK area
volunteers. Both the CCSE Steering Committee and the SEEK area volunteers felt strongly about
emphasizing the academic discipline of software engineering. During the SEEK development
process, the area chosen to represent the theoretical and scientific foundations of developing
software products subsequently grew to the size of one half of the core. This prompted the
Steering Committee to reevaluate whether the original goals of emphasizing the discipline were
indeed being met. The resulting set of knowledge areas are believed to stress the fundamental
principles, knowledge, and practices that underlie the software engineering discipline.

 9

SE Education Knowledge Areas
In this section, we describe the ten knowledge areas that make up the SEEK: Computing

Essentials (CMP), Mathematical & Engineering Fundamentals (FND), Professional Practice
(PRF), Software Modeling & Analysis (MAA), Software Design (DES), Software Verification &
Validation (VAV), Software Evolution (EVL), Software Process (PRO), Software Quality
(QUA), and Software Management (MGT). The knowledge areas do not include material about
continuous mathematics or the natural sciences; the needs in these areas will be discussed in
other parts of the CCSE Volume. For each knowledge area, there is a short paragraph description
and then a table that delineates the units and topics for that area. Each area's topics are listed with
one of three attributes: the Bloom's taxonomy level (what capability should a graduate possess
concerning the topic), whether a topic is essential (or desirable or optional) to the core, and the
recommended core contact hours for the unit.

Bloom's attributes are specified using one of the letters k, c, or a, which represent:
• Knowledge (k) - remembering previously learned material. Test observation and recall of

information, i.e., "bring to mind the appropriate information" (e.g. dates, events, places,
knowledge of major ideas, mastery of subject matter).

• Comprehension (c) - understanding information and ability to grasp meaning of material

presented. For example, translate knowledge to a new context, interpret facts, compare,
contrast, order, group, infer causes, predict consequences, etc.

• Application (a) - ability to use learned material in new and concrete situations. For

example, the use of information, methods, concepts, and theories to solve problems
requiring the skills or knowledge presented.

A topic's relevance to the core is represented as follows:

• Essential (E) - the topic is part of the core.
• Desirable (D) - the topic is not part of the SEEK core, but it should be included in the

core of a particular program if possible; otherwise, it should be considered as part of
elective materials.

• Optional (O) - the topic should be considered as elective only.

Computing Essentials

Description
 Computing essentials includes the computer science foundations that support the design
and construction of software products. This area also includes knowledge about the
transformation of a design into an implementation, the tools used during this process, and formal
software construction methods.

 10

Units and Topics

CMP Computing Essentials 172 Related Topics

CMP.cf Computer Science foundations 140

CMP.cf.1
Programming Fundamentals (CCCS PF1 to PF5) (control & data,
typing, recursion) a E

CMP.cf.2
Algorithms, Data Structures/Representation (static & dynamic)
and Complexity (CCCS AL 1 to AL 5) a E

CMP.ct.1,CMP.f
m.5,MAA.cc.1

CMP.cf.3 Problem solving techniques a E CMP.cf.1
CMP.cf.4 Abstraction – use and support for (encapsulation, hierarchy, etc) a E MAA.md.1

CMP.cf.5 Computer organization (parts of CCCS AR 1 to AR 5) c E

CMP.cf.6 Basic concept of a system c E MAA.rfd.7
CMP.cf.7 Basic user human factors (I/O, error messages, robustness) c E DES.hci

CMP.cf.8 Basic developer human factors (comments, structure, readability) c E CMP.cf.1

CMP.cf.9
Programming language basics (key concepts from CCCS PL1-
PL6) a E

CMP.ct.3,CMP.ct
.4

CMP.cf.10 Operating system basics (key concepts from CCCS OS1-OS5) c E
CMP.ct.10,CMP.
ct.15

CMP.cf.11 Database basics c E DES.con.2

CMP.cf.12 Network communication basics c E

CMP.ct Construction technologies 20

CMP.ct.1 API design and use a E DES.dd.4

CMP.ct.2 Code reuse and libraries a E CMP.cf.1

CMP.ct.3
Object-oriented run-time issues (e.g. polymorphism, dynamic
binding, etc.) a E

CMP.cf.1,9,DES.
str.2

CMP.ct.4 Parameterization and generics a E CMP.cf.1
CMP.ct.5 Assertions, design by contract, defensive programming a E MAA.md.2

CMP.ct.6 Error handling, exception handling, and fault tolerance a E
DES.con.2,VAV.t
st.2,VAV.tst.9

CMP.ct.7 State-based and table driven construction techniques c E
FND.mf.7,MAA.t
m.2,CMP.cf.10

CMP.ct.8 Run-time configuration and internationalization a E DES.hci.6

CMP.ct.9 Grammar-based input processing (parsing) a E FND.mf.8

CMP.ct.10 Concurrency primitives (e.g. semaphores, monitors, etc.) a E CMP.cf.10
CMP.ct.11 Middleware (components and containers) c E DES.dd.3,5

CMP.ct.12 Construction methods for distributed software a E CMP.cf.2

CMP.ct.13
Constructing heterogeneous (hardware and software) systems;
hardware-software codesign c E

DES.ar.3

CMP.ct.14 Hot-spot analysis and performance tuning k E

FND.ef.4,DES.co
n.6,CMP.tl.4,VAV
.fnd.4

CMP.ct.15 Platform standards (Posix etc.) D

CMP.ct.16 Test-first programming D VAV.tst.1

CMP.tl Construction tools 4 DES.ste.1

CMP.tl.1 Development environments a E
CMP.tl.2 GUI builders c E DES.hci

CMP.tl.3 Unit testing tools c E VAV.tst.1

CMP.tl.4
Application oriented languages (e.g. scripting, visual, domain-
specific, markup, macros, etc.) c E

CMP.tl.5 Profiling, performance analysis and slicing tools D CMP.ct.14

 11

CMP.fm Formal construction methods 8
DES.dd.9,MAA.af
.6,EVO.ac.7

CMP.fm.1 Application of abstract machines (e.g. SDL, Paisley, etc.) k E

CMP.fm.2
Application of specification languages and methods (e.g. ASM,
B, CSP, VDM, Z) a E

MAA.md.3,MAA.r
sd.3

CMP.fm.3 Automatic generation of code from a specification k E

CMP.fm.4 Program derivation c E
CMP.fm.5 Analysis of candidate implementations c E MAA.cf.2

CMP.fm.6 Mapping of a specification to different implementations k E

CMP.fm.7 Refinement c E
CMP.fm.8 Proofs of correctness D FND.mf.3

Mathematical and Engineering Fundamentals

 Description
The mathematical and engineering fundamentals of software engineering provide

theoretical and scientific underpinnings for the construction of software products with desired
attributes. These fundamentals support describing software engineering products in a precise
manner. They provide the mathematical foundations to model and facilitate reasoning about
these products and their interrelations, as well as form the basis for a predictable design process.
A central theme is engineering design: a decision-making process of iterative nature, in which
computing, mathematics, and engineering sciences are applied to deploy available resources
efficiently to meet a stated objective.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

FND Mathematical and Engineering Fundamentals 89

FND.mf Mathematical foundations+ 56
FND.mf.1 Functions, Relations and Sets (CCCS DS1) a E

FND.mf.2 Basic Logic (propositional and predicate) (CCCS DS2) a E MAA.md.2,3
FND.mf.3 Proof Techniques (direct, contradiction, inductive) (CCCS DS3) a E CMP.fm.8

FND.mf.4 Basic Counting (CCCS DS4) a E

FND.mf.5 Graphs and Trees (CCCS DS5) a E CMP.cf.2
FND.mf.6 Discrete Probability (CCCS DS6) a E FND.ef.2

FND.mf.7 Finite State Machines, regular expressions c E
CMP.ct.7,MAA.t
m.2

FND.mf.8 Grammars c E CMP.ct.9

FND.mf.9 Numerical precision, accuracy and errors c E

FND.mf.10 Number Theory D
FND.mf.11 Algebraic Structures O

FND.ef Engineering foundations for software 23

FND.ef.1
Empirical methods and experimental techniques (computer-
related measuring techniques for CPU and memory usage) c E

VAV.fnd.4,VAV.h
ct.6

FND.ef.2
Statistical analysis (including simple hypothesis testing,
estimating, regression, correlation etc.) a E

FND.mf.6

FND.ef.3 Measuring individual's performance (e.g. PSP) k E
PRO.con.5,PRO.i
mp.4

 12

FND.ef.4
Systems development (e.g. security, safety, performance, effects
of scaling, feature interaction, etc.) k E

MAA.af.4,DES.co
n.6,VAV.fnd.4,VA
V.tst.9

FND.ef.5
Engineering design (e.g. formulation of problem, alternative
solutions, feasibility, etc.) c E

FND.ec.3,MAA.af
.1

FND.ef.6

Engineering science for other engineering disciplines (strength of
materials, digital system principles, logic design, fundamentals of
thermodynamics, etc.) O

FND.ec Engineering economics for software 10 PRF.pr.6

FND.ec.1 Value considerations throughout the software lifecycle k E

FND.ec.2

Generating system objectives (e.g. participatory design,
stakeholder win-win, quality function deployment, prototyping,
etc.) c E

PRF.psy.4,MAA.
er.2

FND.ec.3
Evaluating cost-effective solutions (e.g. benefits realization,
tradeoff analysis, cost analysis, return on investment, etc.) c E

DES.con.7,MAA.
af.4,MGT.pp.4

FND.ec.4
Realizing system value (e.g. prioritization, risk resolution,
controlling costs, etc.) k E

MAA.af.4,MGT.p
p.6

+Topics 1-6 correspond to Computer Science curriculum guidelines for discrete structures 1-6

Professional Practice

Description
Professional Practice is concerned with the knowledge, skills, and attitudes that software

engineers must possess to practice software engineering in a professional, responsible, and
ethical manner. The study of professional practices includes the areas of technical
communication, group dynamics and psychology, and social and professional responsibilities.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics
PRF Professional Practice 35

PRF.psy Group dynamics / psychology 5
PRF.psy.1 Dynamics of working in teams/groups a E

PRF.psy.2 Individual cognition (e.g. limits) k E DES.hci.10

PRF.psy.3 Cognitive problem complexity k E MAA.rfd.8
PRF.psy.4 Interacting with stakeholders c E FND.ec.2

PRF.psy.5 Dealing with uncertainty and ambiguity k E

PRF.com Communications skills (specific to SE) 10

PRF.com.1
Reading, understanding and summarizing reading (e.g. source
code, documentation) a E

MAA.rsd.1

PRF.com.2 Writing (assignments, reports, evaluations, justifications, etc.) a E

PRF.com.3
Team and group communication (both oral and written, email,
etc.) a E

MGT.per

PRF.com.4 Presentation skills a E

PRF.pr Professionalism 20
PRF.pr.1 Accreditation, certification, and licensing k E

PRF.pr.2 Codes of ethics and professional conduct c E

 13

PRF.pr.3 Social, legal, historical, and professional issues and concerns c E

PRF.pr.4 The nature of, and role of professional societies k E

PRF.pr.5 The nature and role of software engineering standards k E

MAA.rsd.1,CMP.
ct.14,PRO.imp.3,
7,QUA.std

PRF.pr.6 The economic impact of software c E FND.ec

Software Modeling and Analysis

Description
 Modeling and analysis can be considered core concepts in any engineering discipline
since they are essential to documenting and evaluating design decisions and alternatives.
Modeling and analysis is first applied to the analysis, specification, and validation of
requirements. Requirements represent the real world needs of users, customers and other
stakeholders affected by the system and the capabilities and opportunities afforded by software
and computing technologies. The construction of requirements includes an analysis of the
feasibility of the desired system, elicitation and analysis of stakeholders' needs, the creation of a
precise description of what the system should and should not do along with any constraints on its
operation and implementation, and the validation of this description or specification by the
stakeholders.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

MAA Software Modeling and Analysis 53

MAA.md Modeling foundations 19
PRO.con.3,QUA.
pro.1,QUA.pda.3

MAA.md.1

Modeling principles (e.g. decomposition, abstraction,
generalization, projection/views, explicitness, use of formal
approaches, etc.) a E

CMP.cf.4

MAA.md.2 Pre & post conditions, invariants c E CMP.ct.5

MAA.md.3
Introduction to mathematical models and specification languages
(Z, VDM, etc.) c E

MAA.rsd.3,CMP.f
m.2

MAA.md.4 Properties of modeling languages k E
MAA.md.5 Syntax vs. semantics (understanding model representations) c E CMP.cf.9

MAA.md.6 Explicitness (make no assumptions, or state all assumptions) k E

MAA.tm Types of models 12 MAA.md

MAA.tm.1
Information modeling (e.g. entity-relationship modeling, class
diagrams, etc.) a E

MAA.rsd.3,DES.d
d.5

MAA.tm.2

Behavioral modeling (e.g. structured analysis, state diagrams,
use case analysis, interaction diagrams, failure modes and
effects analysis, fault tree analysis etc.) a E

FND.mf.7,MAA.er
.2,MAA.rsd.3,DE
S.dd.5

MAA.tm.3 Structure modeling (e.g. architectural, etc.) c E MAA.rfd.7

MAA.tm.4 Domain modeling (e.g. domain engineering approaches, etc.) k E

MAA.tm.5 Functional modeling (e.g. component diagrams, etc.) c E

MAA.tm.6
Enterprise modeling (e.g. business processes, organizations,
goals, etc.) D

MAA.tm.7
Modeling embedded systems (e.g. real-time schedulability
analysis, external interface analysis, etc.) D

MAA.tm.8 Requirements interaction analysis (e.g. feature interaction, house D

 14

of quality, viewpoint analysis, etc.)

MAA.tm.9 Analysis Patterns (e.g. problem frames, specification re-use, etc.) D

MAA.af Analysis fundamentals 6

MAA.af.1
Analyzing well-formedness (e.g. completeness, consistency,
robustness, etc.) a E

MAA.af.2
Analyzing correctness (e.g. static analysis, simulation, model
checking, etc.) a E

MAA.af.3
Analyzing quality (non-functional) requirements (e.g. safety,
security, usability, performance, root cause analysis, etc.) a E

FND.ef.4,QUA.pd
a,DES.con.6,VAV
.fnd.4,VAV.tst.9,V
AV.hct,EVO.ac.4

MAA.af.4
Prioritization, trade-off analysis, risk analysis , and impact
analysis c E

FND.ec.3,4,QUA.
pda.4

MAA.af.5 Traceability c E
DES.ar.4,EVO.pr
o.2

MAA.af.6 Formal analysis k E CMP.fm

MAA.rfd Requirements fundamentals 3

MAA.rfd.1
Definition of requirements (e.g. product, project, constraints,
system boundary, external, internal, etc.) c E

MAA.rfd.2 Requirements process c E PRO.con.3

MAA.rfd.3
Layers/levels of requirements (e.g. needs, goals, user
requirements, system requirements, software requirements, etc.) c E

MAA.rsd

MAA.rfd.4
Requirements characteristics (e.g. testable, non-ambiguous,
consistent, correct, traceable, priority, etc.) c E

MAA.af.5

MAA.rfd.5 Managing changing requirements c E MGT.ctl.1

MAA.rfd.6
Requirements management (e.g. consistency management,
release planning, reuse, etc.) k E

CMP.ct.3

MAA.rfd.7 Interaction between requirements and architecture k E
MAA.tm.3,DES.ar
.4,EVO.pro.2

MAA.rfd.8
Relationship of requirements to systems engineering, human-
centered design, etc. D

CMP.cf.6

MAA.rfd.9
Wicked problems (e.g. ill-structured problems; problems with
many solutions; etc.) D

PRF.psy.3

MAA.rfd.10 COTS as a constraint D

MAA.er Eliciting requirements 4

MAA.er.1
Elicitation Sources (e.g. stakeholders, domain experts,
operational and organization environments, etc.) c E

PRF.psy.4

MAA.er.2

Elicitation Techniques (e.g. interviews, questionnaires/surveys,
prototypes, use cases, observation, participatory techniques,
etc.) c E

FND.ec.2,MAA.er
.2

MAA.er.3
Advanced techniques (e.g. ethnographic, knowledge elicitation,
etc.) O

MAA.rsd Requirements specification & documentation 6

MAA.rsd.1
Requirements documentation basics (e.g. types, audience,
structure, quality, attributes, standards, etc.) k E

PRF.pr.5

MAA.rsd.2 Software requirements specification a E

MAA.rsd.3
Specification languages (e.g. structured English, UML, formal
languages such as Z, VDM, SCR, RSML, etc.) k E

MAA.md.3,CMP.f
m.2

MAA.rv Requirements validation 3

MAA.rv.1 Reviews and inspection a E
MAA.rv.1,VAV.re
v

MAA.rv.2 Prototyping to validate requirements (Summative prototyping) k E

 15

MAA.rv.3 Acceptance test design c E VAV.tst.8

MAA.rv.4 Validating product quality attributes c E QUA.cc.5
MAA.rv.5 Formal requirements analysis D MAA.af.1

Software Design

Description
Software design is concerned with issues, techniques, strategies, representations, and

patterns used to determine how to implement a component or a system. The design will conform
to functional requirements within the constraints imposed by other requirements such as
resource, performance, reliability, and security. This area also includes specification of internal
interfaces among software components, architectural design, data design, user interface design,
design tools, and the evaluation of design.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics
DES Software Design 45

DES.con Design concepts 3
DES.con.1 Definition of design c E

DES.con.2
Fundamental design issues (e.g. persistent data, storage
management, exceptions, etc.) c E

CMP.ct.6,VAV.tst
.2,CMP.cf.11

DES.con.3
Context of design within multiple software development life
cycles k E

DES.con.4 Design principles (information hiding, cohesion and coupling) a E

DES.con.5 Interactions between design and requirements c E DES.ar.4

DES.con.6
Design for quality attributes (e.g. reliability, usability,
performance, testability, fault tolerance, etc.) k E

FND.ef.4,MAA.tm
.4,DES.ar.2,CMP
.ct.14,VAV.fnd.4

DES.con.7 Design trade-offs k E
FND.ec.3,DES.ar
.2,DES.ev

DES.con.8 Architectural styles, patterns, reuse c E
DES.ar,DES.dd.2
,CMP.ct.3

DES.str Design strategies 6
DES.str.1 Function-oriented design a c E

DES.str.2 Object-oriented design c a E
CMP.cf.9,DES.dd
.5,CMP.ct.4

DES.str.3 Data-structure centered design D
DES.str.4 Aspect oriented design O

DES.ar Architectural design 9

DES.ar.1

Architectural styles (e.g. pipe-and-filter, layered, transaction-
centered, peer-to-peer, publish-subscribe, event-based, client-
server, etc.) a E

DES.con.8

DES.ar.2 Architectural trade-offs between various attributes a E FND.ec.3

DES.ar.3 Hardware issues in software architecture k E CMP.ct.13

DES.ar.4 Requirements traceability in architecture k E
MAA.af.5,DES.co
n.5,EVO.pro.2

 16

DES.ar.5 Domain-specific architectures and product-lines k E

DES.ar.6
Architectural notations (e.g. architectural structure viewpoints &
representations, component diagrams, etc.) c E

MAA.tm

DES.hci Human computer interface design 12
CMP.cf.7,VAV.hc
t,CMP.ct.2

DES.hci.1 General HCI design principles a E

DES.hci.2 Use of modes, navigation a E

DES.hci.3
Coding techniques and visual design (e.g. color, icons, fonts,
etc.) c E

DES.hci.4 Response time and feedback a E

DES.hci.5
Design modalities (e.g. menu-driven, forms, question-answering,
etc.) a E

DES.hci.6 Localization and internationalization c E CMP.ct.8

DES.hci.7 Human computer interface design methods c E

DES.hci.8
Multi-media (e.g. I/O techniques, voice, natural language, web-
page, sound, etc.) D

DES.hci.9 Metaphors and conceptual models D

DES.hci.10 Psychology of HCI D PRF.psy.2

DES.dd Detailed design 12
DES.dd.1 One selected design method (e.g. SSA/SD, JSD, OOD, etc.) a E
DES.dd.2 Design patterns a E DES.con.8

DES.dd.3 Component design a E CMP.ct.11

DES.dd.4 Component and system interface design a E CMP.ct.2

DES.dd.5
Design notations (e.g. class and object diagrams, UML, state
diagrams, etc.) c E

MAA.tm

DES.ste Design support tools and evaluation 3

DES.ste.1
Design support tools (e.g. architectural, static analysis, dynamic
evaluation, etc.) a E

CMP.ct

DES.ste.2
Measures of design attributes (e.g. coupling, cohesion,
information-hiding, separation of concerns, etc.) k E

DES.ste.3
Design metrics (e.g. architectural factors, interpretation, metric
sets in common use, etc.) a E

DES.ste.4 Formal design analysis O MAA.af.2

Software Verification and Validation

Description
Software verification and validation uses both static and dynamic techniques of system

checking to ensure that the resulting program satisfies its specification and that the program as
implemented meets the expectations of the stakeholders. Static techniques are concerned with
the analysis and checking of system representations throughout all stages of the software life
cycle while dynamic techniques involve only the implemented system.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

VAV Software Verification and Validation 42

 17

VAV.fnd V&V terminology and foundations 5
VAV.fnd.1 Objectives and constraints of V&V k E
VAV.fnd.2 Planning the V&V effort k E

VAV.fnd.3 Documenting V&V strategy, including tests and other arti facts a E

VAV.fnd.4
Metrics & Measurement (e.g. reliability, usability, performance,
etc.) k E

FND.ef.4,MAA.af.
2,DES.con.6,CM
P.ct.14,PRO.con.
4

VAV.fnd.5 V&V involvement at different points in the lifecycle k E

VAV.rev Reviews 6 MAA.rv.1

VAV.rev.1 Desk checking a E
VAV.rev.2 Walkthroughs a E

VAV.rev.3 Inspections a E VAV.hct.2,3

VAV.tst Testing 21
MAA.rfd.4,DES.c
on.6,CMP.ct.15

VAV.tst.1 Unit testing a E
CMP.ct.15,CMP.
ct.3

VAV.tst.2
Exception handling (writing test cases to trigger exception
handling; designing good handling) a E

DES.con.2,CMP.
ct.6

VAV.tst.3
Coverage analysis (e.g. statement, branch, basis path, multi--
condition, dataflow, etc.) a E

VAV.tst.4 Black-box functional testing techniques a E

VAV.tst.5 Integration Testing c E

VAV.tst.6
Developing test cases based on use cases and/or customer
stories a E

MAA.tm.2

VAV.tst.7 Operational profile-based testing k E

VAV.tst.8 System and acceptance testing a E MAA.rv.4

VAV.tst.9
Testing across quality attributes (e.g. usability, security,
compatibility, accessibility, etc.) a E

MAA.af.3,MAA.rv
.6,VAV.hct,QUA.
cc.5

VAV.tst.10 Regression Testing c E

VAV.tst.11 Testing tools a E CMP.ct.3

VAV.tst.12 Deployment process D

VAV.hct Human computer user interface testing and evaluation 6
DES.hci,VAV.tst.
9

VAV.hct.1 The variety of aspects of usefulness and usability k E MAA.af.3

VAV.hct.2 Heuristic evaluation a E VAV.rev.3

VAV.hct.3 Cognitive walkthroughs c E VAV.rev.3
VAV.hct.4 User testing approaches (observation sessions etc.) a E

VAV.hct.5 Web usability; testing techniques for web sites c E

VAV.hct.6
Formal experiments to test hypotheses about specific HCI
controls D

FND.ef.1

VAV.par Problem analysis and reporting 4
VAV.par.1 Analyzing failure reports c E

VAV.par.2 Debugging/fault isolation techniques a E
VAV.par.3 Defect analysis k E

VAV.par.4 Problem tracking c E

 18

Software Evolution

Description
 Software evolution is the result of the ongoing need to support the stakeholders' mission

in the face of changing assumptions, problems, requirements, architectures and technologies. It is
intrinsic to all real world software systems. Support for evolution requires numerous activities
both before and after each of a succession of versions or upgrades (releases) that constitute the
evolving system. Evolution is a broad concept that expands upon the traditional notion of
software maintenance.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics
EVO Software Evolution 10

EVO.pro Evolution processes 6
EVO.pro.1 Basic concepts of evolution and maintenance k E

EVO.pro.2
Relationship between evolving entities (e.g. assumptions,
requirements, architecture, design, code, etc.) k E

MAA.af.4,DES.ar.
4

EVO.pro.3 Models of software evolution (e.g. theories, laws, etc.) k E

EVO.pro.4 Cost models of evolution D FND.ec.3

EVO.pro.5 Planning for evolution (e.g. outsourcing, in-house, etc.) D MGT.pp

EVO.ac Evolution activities 4
VAV.par.4,MGT.c
m

EVO.ac.1 Working with legacy systems (e.g. use of wrappers, etc.) k E

EVO.ac.2 Program comprehension and reverse engineering k E

EVO.ac.3 System and process re-engineering (technical and business) k E
EVO.ac.4 Impact analysis k E

EVO.ac.5 Migration (technical and business) k E

EVO.ac.6 Refactoring k E
EVO.ac.7 Program transformation D

EVO.ac.8 Data reverse engineering D

Software Process

Description
 Software process is concerned with knowledge about the description of commonly used

software life-cycle process models and the contents of institutional process standards; definition,
implementation, measurement, management, change and improvement of software processes;
and use of a defined process to perform the technical and managerial activities needed for
software development and maintenance.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

PRO Software Process 13

 19

PRO.con Process concepts 3
PRO.con.1 Themes and terminology k E

PRO.con.2
Software engineering process infrastructure (e.g. personnel,
tools, training, etc.) k E

PRO.con.3 Modeling and specification of software processes c E MAA.rfd.2
PRO.con.4 Measurement and analysis of software processes c E MGT.ctl.3

PRO.con.5 Software engineering process improvement (individual, team) c E
FND.ef.3,PRO.im
p.4,5

PRO.con.6
Quality analysis and control (e.g. defect prevention, review
processes, quality metrics, root cause analysis, etc.) c E

MAA.rv.1,VAV.re
v,QUA.pda.4

PRO.con.7 Analysis and modeling of software process models D

PRO.imp Process implementation 10

PRO.imp.1
Levels of process definition (e.g. organization, project, team,
individual, etc.) k E

PRO.imp.2 Life cycle models (agile, heavyweight:waterfall, spiral, etc.) c E
DES.con.3,VAV.f
nd.5

PRO.imp.3 Life cycle process models and standards (e.g., IEEE, ISO, etc.) c E
PRF.pr.5,QUA.pr
o.2

PRO.imp.4
Individual software process (model, definition, measurement,
analysis, improvement) a E

PRO.con.5

PRO.imp.5
Team software process (model, definition, organization,
measurement, analysis, improvement) a E

PRO.con.5

PRO.imp.6 Process tailoring k E
PRO.imp.7 ISO/IEEE Standard 12207: requirements of processes k E PRF.pr.5

Software Quality

Description
Software quality is a pervasive concept that affects, and is affected by all aspects of

software development, support, revision, and maintenance. It encompasses the quality of work
products developed and/or modified (both intermediate and deliverable work products) and the
quality of the work processes used to develop and/or modify the work products. Quality work
product attributes include usability, reliability, safety, security, maintainability, flexibility,
efficiency, performance and availability.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics

QUA Software Quality 16

QUA.cc Software quality concepts and culture 2
QUA.cc.1 Definitions of quality k E

QUA.cc.2 Society's concern for quality k E
QUA.cc.3 The costs and impacts of bad quality k E

QUA.cc.4 A cost of quality model c E MGT.pp.4

QUA.cc.5 Quality attributes for software (e.g. dependability, usability, etc.) k E
MAA.rva.5,VAV.t
st.9,QUA.pda.5

QUA.cc.6 The dimensions of quality engineering k E

QUA.cc.7 Roles of people, processes, methods, tools, and technology k E

 20

QUA.std Software quality standards 2 PRF.pr.5

QUA.std.1 The ISO 9000 series k E
QUA.std.2 ISO/IEEE Standard 12207: the "umbrella" standard k E

QUA.std.3 Organizational implementation of standards k E

QUA.std.4 IEEE software quality-related standards D

QUA.pro Software quality processes 4

QUA.pro.1 Software quality models and metrics c E
VAV.fnd.4,QUA.p
da.5

QUA.pro.2 Quality-related aspects of software process models k E PRO.imp.3

QUA.pro.3 Introduction/overview of ISO 15504 and the SEI CMMs k E PRF.pr.5
QUA.pro.4 Quality-related process areas of ISO 15504 k E PRF.pr.5

QUA.pro.5 Quality-related process areas of the SW-CMM and the CMMIs k E

QUA.pro.6 The Baldridge Award criteria for software engineering O
QUA.pro.7 Quality aspects of other process models O

QUA.pca Process assurance 4
QUA.pca.1 The nature of process assurance k E

QUA.pca.2 Quality planning a E MGT.pp

QUA.pca.3 Organizing and reporting for process assurance a E
QUA.pda.4 Techniques of process assurance c E

QUA.pda Product assurance 4
QUA.pda.1 The nature of product assurance k E

QUA.pda.2 Distinctions between assurance and V&V k E VAV

QUA.pda.3 Quality product models k E
QUA.pda.4 Root cause analysis and defect prevention c E PRO.con.6

QUA.pda.5 Quality product metrics and measurement c E
VAV.fnd.4,QUA.c
c.5,QUA.pro.1

QUA.pda.6
Assessment of product quality attributes (e.g. useability,
reliability, availability, etc.) c E

Software Management

Description
Software management is concerned with knowledge about the planning, organization,

and monitoring of all software life cycle phases. Management is critical to ensure that software
development projects are appropriate to an organization, work in different organizational units is
coordinated, software versions and configurations are maintained, resources are available when
necessary, project work is divided appropriately, communication is facilitated, and progress is
accurately charted.

Units and Topics
Reference k,c,a E,D,O Hours Related Topics
MGT Software Management 19

MGT.con Management concepts 2
MGT.con.1 General project management k E

 21

MGT.con.2 Classic management models k E

MGT.con.3 Project management roles k E
MGT.con.4 Enterprise/Organizational management structure k E

MGT.con.5
Software management types (e.g. acquisition, project,
development, maintenance, risk, etc.) k E

FND.ec.4,MG T.p
p.6,EVO

MGT.pp Project planning 6
VAV.fnd.2,QUA.p
ca.2

MGT.pp.1 Evaluation and planning c E

MGT.pp.2 Work breakdown structure a E

MGT.pp.3 Task scheduling a E

MGT.pp.4 Effort estimation a E
FND.ec.3,QUA.c
c.4

MGT.pp.5 Resource allocation c E

MGT.pp.6 Risk management a E FND.ec.4

MGT.per Project personnel and organization 2 PRF.com.3

MGT.per.1
Organizational structures, positions, responsibilities, and
authority k E

MGT.per.2 Formal/informal communication k E

MGT.per.3 Project staffing k E

MGT.per.4 Personnel training, career development, and evaluation k E
MGT.per.5 Meeting management a E

MGT.per.6 Building and motivating teams a E

MGT.per.7 Conflict resolution a E

MGT.ctl Project control 4

MGT.ctl.1 Change control k E
MAA.rfd.5,MGT.c
m.1,2

MGT.ctl.2 Monitoring and reporting c E

MGT.ctl.3 Measurement and analysis of results c E PRO.con.4
MGT.ctl.4 Correction and recovery k E

MGT.ctl.5 Reward and discipline O

MGT.ctl.6 Standards of performance O

MGT.cm Software configuration management 5
MGT.cm.1 Revision control a E MGT.ctl.1
MGT.cm.2 Release management c E MGT.ctl.1

MGT.cm.3 Tool support c E

MGT.cm.4 Builds c E
MGT.cm.5 Software configuration management processes k E

MGT.cm.6 Maintenance issues k E EVO.ac

MGT.cm.7 Distribution and backup D

Systems and Application Specialties
As part of an undergraduate software engineering education, students should specialize in

one or more areas. Within their specialty, students should learn material well beyond the core
material specified above. They may either specialize in one or more of the ten knowledge areas
listed above, or they may specialize in one or more of the application areas listed below. For

 22

each application area, students should obtain breadth in the related domain knowledge while they
are obtaining a depth of knowledge about the design of a particular system. Students should also
learn about the characteristics of typical produc ts in these areas and how these characteristics
influence a system's design and construction. Each application specialty listed below is
elaborated with a list of related topics that are needed to support the application.

This list of application areas is not intended to be exhaustive but is designed to give
guidance to those developing specialty curricula.

Specialties and Their Related Topics
Reference
SAS System and Application Specialties

SAS.net Network-centric systems
SAS.net.1 Knowledge and skills in web-based technology
SAS.net.2 Depth in networking
SAS.net.3 Depth in security

SAS.inf Information systems and data processing
SAS.inf.1 Depth in databases
SAS.inf.2 Depth in business administration
SAS.inf.3 Data warehousing

SAS.fin Financial and e-commerce systems
SAS.fin.1 Accounting
SAS.fin.2 Finance
SAS.fin.3 Depth in security

SAS.sur Fault tolerant and survivable systems
SAS.sur.1 Knowledge and skills with heterogeneous, distributed systems
SAS.sur.2 Depth in security
SAS.sur.3 Failure analysis and recovery
SAS.sur.4 Intrusion detection

SAS.sec Highly secure systems
SAS.sec.1 Business issues related to security
SAS.sec.2 Security weaknesses and risks
SAS.sec.3 Cryptography, cryptanalysis, steganography, etc.
SAS.sec.4 Depth in networks

SAS.sfy Safety critical systems
SAS.sfy.1 Depth in formal methods, proofs of correctness, etc.
SAS.sfy.2 Knowledge of control systems

SAS.emb Embedded and real-time systems
SAS.emb.1 Hardware for embedded systems
SAS.emb.2 Language and tools for development
SAS.emb.3 Depth in timing issues
SAS.emb.3 Hardware verification

 23

SAS.bio Biomedical systems
SAS.bio.1 Biology and related sciences
SAS.bio.2 Related safety critical systems knowledge

SAS.sci Scientific systems
SAS.sci.1 Depth in related science
SAS.sci.2 Depth in statistics
SAS.sci.3 Visualization and graphics

SAS.tel Telecommunications systems
SAS.tel.1 Depth in signals, information theory, etc.
SAS.tel.2 Telephony and telecommunications protocols

SAS.av Avionics and vehicular systems
SAS.av.1 Mechanical engineering concepts
SAS.av.2 Related safety critical systems knowledge
SAS.av.3 Related embedded and real-time systems knowledge

SAS.ind Industrial process control systems
SAS.ind.1 Control systems
SAS.ind.2 Industrial engineering and other relevant areas of engineering
SAS.ind.3 Related embedded and real-time systems knowledge

SAS.mm Multimedia, game and entertainment systems
SAS.mm.1 Visualization, haptics, and graphics
SAS.mm.2 Depth in human computer interface design
SAS.mm.3 Depth in networks

SAS.mob Systems for small and mobile platforms
SAS.mob.1 Wireless technology
SAS.mob.2 Depth in human computer interfaces for small and mobile platforms
SAS.mob.3 Related embedded and real-time systems knowledge
SAS.mob.4 Related telecommunications systems knowledge

SAS.ab Agent-based systems
SAS.ab.1 Machine learning
SAS.ab.2 Fuzzy logic
SAS.ab.3 Knowledge engineering

Appendix A
CCSE Steering Committee
Co-Chairs

Rich LeBlanc, ACM, Georgia Institute of Technology, U.S.
Ann Sobel, IEEE, Miami University, U.S.

Knowledge Area Chair
 Ann Sobel, Miami University, U.S.
Pedagogy Focus Group Co-Chairs

 24

Mordechai Ben-Menachem, Ben-Gurion University, Israel
Timothy C. Lethbridge, University of Ottawa, Canada

Co-Editors
Jorge L. Díaz-Herrera, Rochester Institute of Technology, U.S.
Thomas B. Hilburn, Embry-Riddle Aeronautical University, U.S.

Organizational Representatives
ACM: Andrew McGettrick, University of Strathclyde, U.K.
ACM SIGSOFT: Joanne M. Atlee, University of Waterloo, Canada
ACM Two-Year College Committee: Elizabeth Hawthorne, Union County College, U.S.
Australian Computer Society: John Leaney, University of Technology Sydney, Australia
British Computer Society: David Budgen, Keele University, U.K.
Information Processing Society of Japan: Yoshihiro Matsumoto, Musashi Institute of

Technology, Japan
IEEE Computer Technical Committee on Software Engineering: Barrie Thompson,

University of Sunderland, U.K.

Appendix B
Education Knowledge Area Volunteers

Jonathan D. Addelston, UpStart Systems, U.S.
Roger Alexander, Colorado State University, U.S.
Niniek Angkasaputra, Fraunhofer Institute of Experimental Software Engineering,

Germany
Mark A. Ardis, Rose-Hulman University, U.S.
Jocelyn Armarego, Murdoch University, Australia
Doug Baldwin, The State University of New York, Geneseo, U.S.
Earl Beede, Construx, U.S.
Fawsy Bendeck, University of Kaiserslautern, Germany
Mordechai Ben-Menachem, Ben-Gurion University, Israel
Robert Burnett, consultant, Brazil
Kai Chang, Auburn University, U.S.
Jason Chen, National Central University, Taiwan
Cynthia Cicalese, Marymount University, U.S.
Tony (Anthony) Cowling, University of Sheffield, U.K.
David Dampier, Mississippi State University, U.S.
Mel Damodaran, University of Houston, U.S.
Onur Demirors, Middle East Technical University, Turkey
Vladan Devedzic, University of Belgrade, Yugoslavia
Oscar Dieste, University of Alfonso X El Sabio, Spain
Dick Fairley Oregon Graduate Institute, U.S.
Mohamed E. Fayad, University of Nebraska, Lincoln, U.S.
Orit Hazzan, Israel Institute of Technology, Israel
Bill Hefley, consultant, U.S.
Peter Henderson, Butler University, U.S.
Joel Henry, University of Montana, U.S.
Jens Jahnke, University of Victoria, Canada

 25

Stanislaw Jarzabek, National University of Singapore, Singapore
Natalia Juristo, Universidad Politecnica of Madrid, Spain
Umit Karakas, consultant, Turkey
Atchutarao Killamsetty, JENS SpinNet, Japan
Haim Kilov, Financial Systems Architects, U.S.
Moshe Krieger, University of Ottawa, Canada
Hareton Leung, Hong Kong Polytechnic University, Hong Kong
Marta Lopez, Fraunhofer Institute of Experimental Software Engineering,

Germany
Mike Lutz, Rochester Institute of Technology, U.S.
Paul E. MacNeil, Mercer University, U.S.
Mike McCracken, Georgia Institute of Technology, U.S.
James McDonald, Monmouth University, U.S.
Emilia Mendes, University of Auckland, New Zealand
Luisa Mich, University of Trento, Italy
Ana Moreno, Universidad Politecnica of Madrid, Spain
Traian Muntean, University of Marseilles, France
Keith Olson, Utah Valley State College, U.S.
Michael Oudshoorn, University of Adelaide, Australia
Dietmar Pfahl, Fraunhofer Institute of Experimental Software Engineering,

Germany
Mario Piattini, University of Paseo, Spain
Francis Pinheiro, University of Brazil, Brazil
Valentina Plekhanova, University of Sunderland, U.K.
Hossein Saiedian, University of Kansas, U.S.
Stephen C. Schwarm, EMC, U.S.
Peraphon Sophatsathit, Chulalongkorn University, Thailand
Jennifer S. Stuart, Construx, U.S.
Linda T. Taylor, Taylor & Zeno Systems, U.S.
Richard Thayer, California State University, Sacramento, U.S.
Jim Tomayko, Carnegie Melon University, U.S.
Massood Towhidnejad, Embry-Riddle University, U.S.
Joseph E. Urban, Arizona State University, U.S.
Arie van Deursen, National Research Institute for Mathematics & Computer Science,

Netherlands
Sira Vegas, University of Madrid, Spain
Bimlesh Wadhwa, National University of Singapore, Singapore
Yingxu Wang, University of Calgary, Canada
Mary Jane Willshire, University of Portland, U.S.
Mansour Zand, University of Nebraska, Omaha, U.S.

 Jianhan Zhu, University of Ulster, U.K.

Appendix C
CCSE Workshop Attendees

 Earl Beede, Construx, U.S.
Pierre Bourque, University of Quebec
David Budgen, Keele University, U.K.
Kai Chang, Auburn University, U.S.
Jorge L. Díaz-Herrera, Rochester Institute of Technology, U.S.
Frank Driscoll, Mitre Cooperation, U.S.
Steve Easterbrook, University of Toronto, Canada
Dick Fairley, Oregon Graduate Institute, U.S.
Peter Henderson, Butler University, U.S.
Thomas B. Hilburn, Embry-Riddle University, U.S.
Tom Horton, University of Virginia, U.S.
Cem Kaner, Florida Institute of Technology, U.S.
Haim Kilov, Financial Systems Architects, U.S.
Gideon Kornblum, Getronics, Netherlands
Rich LeBlanc, Georgia Institute of Technology, U.S.
Timothy C. Lethbridge, University of Ottawa, Canada
Bill Marion, Valparaiso University, U.S.
Yoshihiro Matsumoto, Musashi Institute of Technology, Japan
Mike McCracken, Georgia Institute of Technology, U.S.
Andrew McGettrick, University of Strathclyde, U.K.
Susan Mengel, Texas Tech University, U.S.
 Traian Muntean, University of Marseilles, France
Keith Olson, Utah Valley State College, U.S.
Allen Parrish, University of Alabama, U.S.
Ann Sobel, Miami University, U.S.

 Jenny Stuart, Construx, U.S.
Linda T. Taylor, Taylor & Zeno Systems, U.S.

 Barrie Thompson, University of Sunderland, U.K.
Richard Upchurch, University of Massachussetts, U.S.

 Frank H. Young, Rose-Hulman University, U.S.

Appendix D
Internal Reviewers

Barry Boehm, University of Southern California, U.S.
 Kai H. Chang, Auburn University, U.S.

Jason Jen-Yen Chen, National Central University, Taiwan
Tony Cowling, University of Sheffield, U.K.
Vladan Devedzic, University of Belgrade, Yugoslavia
Laura Dillon, Michigan State University, U.S.

 Dennis J. Frailey, Raytheon, U.S.
Peter Henderson, Butler University, U.S.
Watts Humphrey, Software Engineering Institute, U.S.
Haim Kilov, Financial Systems Architects, U.S.
Hareton Leung, Hong Kong Polytechnic University, Hong Kong

 27

Yoshihiro Matsumoto, Information Processing Society, Japan
Bertrand Meyer, ETH, Zurich

 Luisa Mich, University of Trento, Italy
James W. Moore, Mitre, U.S.
Hausi Muller, University of Victoria, Canada

 Peter G. Neuman, SRI International, U.S.
 David Notkin, University of Washington, U.S.
 David Parnas, McMaster University, Canada
 Dietmar Pfahl, Fraunhofer Institute of Experimental Software Engineering, Germany

Mary Shaw, Carnegie Mellon University, U.S.
 Ian Sommerville, Lancaster University, U.K.
 Peraphon Sophatsathit, Chulalongkorn University, Thailand

Steve Tockey, Construx Software, U.S.
Massood Towhidnejad, Embry-Riddle University, U.S.
Leonard Tripp, Boeing Shared Services, U.S.

Appendix E
External Reviewers of First Draft
 James P. Alstad, Hughes Space and Communications Company, USA

Niniek Angkasaputra, Fraunhofer Institute for Experimental SE, Germany
Hernan Astudillo, Financial Systems Architects, USA
Donald J. Bagert, Rose-Hulman Institute of Technology, USA
Mario R. Barbacci, Software Engineering Institute, USA
Ilia Bider, IbisSoft AB, Sweden
Grady Booch, Rational Corp, USA
Jurgen Borstler, Umeå University, Sweden
Pierre Bourque, Ecole de Technologie Superieure, Montreal, Canada
David Budgen, Keele University, UK
Joe Clifton, University of Wisconsin - Platteville, USA
Kendra Cooper, The University of Texas at Dallas, USA
Tony Cowling, University of Sheffield, UK
Vladan Devedzic, University of Belgrade, Yogoslavia
Rick Duley, Edith Cowan University, Australia
Robert Dupuis, Universite de Quebec à Monteal, Canada
Juan Garbajosa, Universidad Politecnica de Madrid, Spain
Robert L. Glass, Indiana University, USA
Orit Hazzan, Technion -- Israel Institute of Technology, Israel
Hui Huang, National Institute of Standards and Technology, USA
IFIP Working Group 2.9
Joseph Kasser, University of South Australia
Khaled Khan, University of Western Sydney, Australia
Peter Knoke, University of Alaska, Fairbanks, USA
Gideon Kornblum, CManagement bv, Netherlands
Claude Laporte, Ecole de Technologie Superieure, Montreal, Canada
Ansik Lee, Texas Instruments, USA

 28

Hareton Leung, Hong Kong Polytechnic University, Hong Kong
Grace Lewis, Software Engineering Institute, USA
Michael Lutz, Rochester Institute of Technology, USA
Andrew Malton, University of Waterloo, Canada
Nikolai Mansurov, KLOCwork Inc., Ottawa, Canada
Esperanza Marcos, Rey Juan Carlos University, Spain
Pat Martin, Florida Institute of Technology, USA
Kenneth L. Modesitt, Indiana University - Purdue University Fort Wayne, USA
Ibrahim Mohamed, Universiti Kebangsaan, Malaysia
James Moore, Mitre Corporation, USA
Keith Paton, Independent consultant, Montreal, Canada
Pedagogy Focus Group Volunteers
Valentina Plekhanova, University of Sunderland, UK
Steve Roach, University of Texas at El Paso, USA
Francois Robert, Ecole de Technologie Superieure, Montreal, Canada
Robert C. Seacord, Software Engineering Institute, USA
Peraphon Sophatsathit, Chulalongkorn University, Thailand
Witold Suryn, Ecole de Technologie Superieure, Montreal, Canada
Sylvie Trudel, Ecole de Technologie Superieure, Montreal, Canada
Hans van Vliet, Vrije Universiteit Amsterdam, Netherlands
Frank H. Young, Rose-Hulman Institute of Technology, USA
Zdzislaw Zurakowski, Institute of Power Systems Automation, Poland

