
Review Comments for
SE2004 Volume - Public Draft 3 - 1/25/04

This document represents the response to reviewer comments from the second
and third public calls for review of the SE2004 Volume (previously named
CCSE). The second public review was completed in February 2004, and third in
March 2004. Each comment is paired with a response form the SE2004 Steering
Committee. In most cases the reviewer comment is quoted verbatim; however, in
some cases the comment was summarized or abbreviated to improve document
readability. The SE2004 Steering Committee is appreciative of the careful and
thoughtful review by the reviewers; we feel their comments and suggestions have
produced a much-improved document.

reviewer 3000027837 - Hareton Leung (Hong Kong Polytechnic University)
comment 5.4 For curriculum guideline 17, it may be better to mention

cyber-based learning.
CCSE
response

Good point. We have made this explicit.

comment 5.4 Include a guideline on how often the curriculum should
be reviewed to incorporate the latest development in SE.

CCSE
response

CCSE principles 3 and 4, in section 2.1 address the need for
CCSE itself to be kept up to date, but the reviewer is correct in
stating that the principles for individual curricula in Chapter 5 do
not also make this point. We have therefore added a guideline 19
that explicitly makes this point

reviewer 30000313617 - Tony Cowling (University of Sheffield)
comment 2.2 As far as I can tell, this was originally supposed to

be a separate chapter between the current chapters 3 and 4. This
really where it belongs, and it ought to be moved there.

CCSE
response

We agree that a context about the nature of the SE discipline
should be laid prior to espousing guidelines and outcomes.
Chapters 2 and 3 have been interchanged.

comment 3.2 Modify the wording of the fourth sentence - seems to be
claiming that the SE-CS connection is stronger than the Eng-Sci
connection for other branches of Eng, which is probably not true,
whereas I think that what it is trying to say is that SE is more
strongly connected to CS than to other branches of Eng, which
seems much more believable.

CCSE
response

We agree and have incorporated your recommended change.

comment 3.2.1 Reinstate the following characteristic that was listed in public
draft 1, and has now been lost: that engineers solve customer
problems. The customer focus is one of the key things that
distinguish engineering from science.

3.2.1 Reinstate the following characteristic that was listed
in public draft 1, and has now been lost: that engineering is a
creative discipline. While item 3 refers to "creating a design", the
rest of these characteristics make it all seem very mechanical, and
it isn't!
3.2.1 Reinstate the following characteristic that was listed
in public draft 1, and has now been lost: that engineers have to
apply knowledge from other disciplines. Engineering can not be
seen as an activity that stands in isolation from other disciplines.
3.2.1 Reinstate the following characteristic that was listed
in public draft 1, and has now been lost: that engineers work in
teams (often interdisciplinary). Because the lone engineer is
almost a contradiction in terms!
3.2.1 Possibly make a distinction between those characteristics in
this list that are specific to engineering (e.g. the development of
systems to solve customer requirements), and those that are
shared with other professions. Otherwise, it looks as if more is
being claimed as exclusive to engineering than is reasonable.
3.2.1 Either add to the items in this list comments on how they
apply to SE, or possibly follow this list with a separate matching list
of points that discuss the application of these characteristics to
SE. Some of this was there in public version 1, and seems to have
been lost.

CCSE
response

Those items removed were characteristics of more than just all
engineering disciplines, they included most craft/licensed
professions. An attempt was made to restrict this list to those
characteristics that were particular to engineers. However,
because of its importance and in SE and in SE curriculum design,
the teamwork characteristic will be added back into the list of
characteristics.

comment 3.3.1 Currently this refers to a number of the points that were in
3.2.1, and have now been lost from it. If the proposals above to
reinstate them are not accepted, then references here to those
points need to be removed - but I would prefer to see the points
reinstated in 3.2.1.

CCSE
response

This section has been changed to accommodate the changes in
the section characteristics of engineering.

comment 3.5 Since the bullet points here have been re-ordered from the
previous version, the citation of [Bloom 1956] needs to move up
from the third bullet point to the first one.

CCSE
response

The Bloom citation is included in the correct bullet item.

comment 4.1 To acknowledge, at the end of para 2, that actually students
can achieve higher levels on the Bloom taxonomy than the three
that are used in the SEEK, and the restriction to 3 levels was really
to keep the classification manageable. Our students do - perhaps

not as frequently as I'd like, but often enough that the current
statement is just not true.

CCSE
response

The steering committee selected the first three levels of learning
given that they represent what undergraduate programs, across
the international spectrum, should be expected to achieve. Some
programs, in some areas, such as yours, will set and achieve
higher expectations.

comment 4.3 Add, to the explanation of the limits of the core, the
observation that was made at the SIGCSE meeting, viz that the
reason why some KAs had comparatively few core hours was
because it was envisaged that students would learn most of what
they needed in these areas in professional practice after
graduation.

CCSE
response

It has been stated repeatedly throughout this document that the
SEEK is limited to what can be learned in an undergraduate SE
program. In particular, this distinction is made when referencing
SWEBOK and the differences between the two documents.

comment 4.9 Delete the note at the end about topics 1-6 corresponding to
CCCS DS, since this is now in the entries in the table.

CCSE
response

It is indeed true that the individual DS topics are referenced on
some of the topics of FND.mf. The footnote explains what the
CCCS DS reference means and we have decided to keep it.

comment 4.11 Consider splitting MAA.tm.2 into two topics, so as to separate
reliability modeling (failure modes and effects analysis, fault tree
analysis, etc) from the more basic behavioral modeling (the rest).
 Because typically the basic material is introduced some time
before the reliability modelling, and separating them would make
this clearer.

CCSE
response

This section can be separated in two different categories of
modeling but they are presented together since both categories
represent types of models. As stated in the beginning sections of
chapter 4, the ordering of KAs, Units, or Topics is not meant to
represent the order in which the material is to be taught.

comment 4.11Remove the self-references under "related topics" in MAA.er.2
and MAA.rv.1. Because such self-references don't make sense!

CCSE
response

You are correct. MAA.er.2 should reference MAA.er.1. MAA.rv.1
should not reference itself. The errors have been corrected.

comment 4.18 In SAS.sfy.3, add at the start of the wording "Depth in". The
basics are already covered in MAA.tm.2.

CCSE
response

The recommended wording has been added.

reviewer 30000515713 - Michael Wing (Vandyke Software)
comment Positive Comments

The CCSE curriculum proposal draft 3.1 (specifically the courses)

is very good. The courses introduce all of the important software
engineering material that I know. I am impressed with its
sophistication and respect for diverse opinions. For example, the
discussion of licensing respects the disparate opinions of people
and properly defers resolution until later, when a consensus may
emerge.

I would quibble that the curriculum still has too much process and
formal methods and not enough construction and testing. I looked
up the course offerings of mechanical engineering at MIT and
electrical engineering at Stanford, and I note that they spend much
less time on process. But I can live with the current proposal.

CCSE
response

We have attempted to reach an appropriate and reasonable
balance among such topics as process, formal methods,
construction, and testing. We have purposely left sufficient
flexibility in the recommendations in order to support diversity and
specialization among BSSE programs.

comment Negative Comments
However, I protest the assertion that software engineering is a
branch of traditional engineering. Software Engineering Stands on
Its Own
According to the statistics presented in Software Engineering is
Very Big, software engineering is about 60% as large as all
traditional engineering combined, and with a small change of
perspective, it may soon grow to be as large as all traditional
engineering combined. In the U.S., software engineering drives an
economic sector that earns $200 billion to $250 billion every year
and drove $1 trillion of economic growth over the last decade.
Software engineering is evolving rapidly, and it makes a positive
difference in the lives of more than more than a billion people,
every day. Software engineering is big, important, very cool, and is
emerging to stand on its own. Software engineering is worth
fighting for.

The claim that software engineering is a branch of traditional
engineering has many negative consequences, both inside this
curriculum proposal and in the real world. Inside this proposal, the
claim affects the rhetoric of the proposal; whether students must
study years of calculus, physics, and chemistry; what kind of math
is appropriate; and which departments are qualified to teach it. In
the real world, this claim affects jobs; recognition for leaders,
educators, and researchers; the role of the ACM in software
engineering; and the future status of software engineering as a
profession. This claim affects us all.

The CCSE proposal deliberately downplays the size and

importance of SE, so they make the claim that SE is a branch of
engineering seems unimportant. But in doing so, they also
downplay the size and importance of the SE profession and all SE
practitioners, which also affects us all.

I understand why traditional engineering wants to steal a
profession as cool and important as software engineering. Now is
the time to steal it, before software engineering finds its own
identity and stands up as its own profession on its own terms. But,
it is job of computer scientists and of the ACM to defend their
contributions to software engineering, the legacy that software
engineering inherits, and their right to participate in the future of
SE.

The specific relationship between traditional engineering and
software engineering should be removed from this document, until
after a consensus emerges. The relationship is not needed to
justify any of the other core material or proposed courses. Of
course, it is reasonable to state that within Canada and Texas,
software engineering is a branch of traditional engineering by legal
status. However such a claim has not been made in New Mexico,
California, New York, Japan, Israel, or in most other jurisdictions.

Note that if software engineering is a branch of traditional
engineering, then it is the biggest branch by a long shot. It is so
large that it can write its own rules.

Note that the concluding paragraph of 3.2.1 on page 16, states
that software engineering is beyond engineering.

CCSE
response

There has been a great deal of comment and discussion about the
description of SE in chapter 3 (see review comments for the first
public review). We have reworded sections to improve clarity and,
in some places, modified the tone and emphasis. Some have
criticized the emphasis on the “engineering” nature of software
development and others have called for drawing a stronger
relationship. We have attempted a complex balancing act of both
reflecting the current state of SE and trying to project what its
future should be (for purposes of educating the SEs of the next
generation). We appreciate and learn from constructive criticism.
The statement “… CCSE proposal deliberately downplays the size
and importance of SE…” is untrue and unfortunate.

comment Calculus, Physics, and Chemistry
The proposal clearly states that most students will find calculus,
physics, and chemistry useless. Yet, it advocates wasting many
hours of course work for all students to follow in the footsteps of
other engineers. There is probably better material for them to

learn.

Kind of Mathematics
The proposal advocates more mathematics, which I agree with.
But, calculus is only one kind of mathematics. The proposal also
disparages theoretical computer science, which is another kind of
mathematics. I believe that any kind of mathematics is fine for
teaching mathematical rigor, but the proposal clearly prefers (the
useless) calculus over (the possibly useful) theoretical computer
science. Note that section 1.3 clearly states that CS provides
many of the underpinnings of SE.

CCSE
response

Calculus, physics and chemistry are not part of the core SEEK
areas that are recommended for all SE programs. Some programs
however, will want to include such courses (e.g., they specialize in
domains that require such knowledge, they are part of a college of
engineering that requires continuous math and science courses, or
for other historical reasons). The mathematical topics that are part
of the core come from discrete mathematics and mathematical
logic. There is no intent to disparage theoretical computer science;
in fact, we believe that a foundation in computer science theory is
essential to the study of software engineering. That is why the
largest percentage of contact hours in the SEEK is devoted to
computing Essentials. However, we would expect that a greater
percentage of a CS curriculum would be devoted to purely
theoretical topics than in SE, since the objective of many CS
programs is prepare students for advance study and research in
computer science.

comment Engineering Mindset

Section 5.2 Guideline 4: states that students must develop an
“engineering mindset.” What does “engineering mindset” really
mean. All of my colleagues who have CS degrees understand
measurement, modeling, and abstraction, problem solving, and
reuse just fine. Many non-engineers I know also understand these
concepts. This guideline reminds me of the “splunge” skit from
Monty Python should be removed.

This guideline implies that few of the educators on the CCSE
committee have an “engineering mindset” and are unqualified to
work on this proposal. Edsger Dijkstra has 3 degrees in physics,
which means that he would have lacked the mindset to contribute
to either computer science or software engineering. Barry Boehm
has 3 degrees in mathematics, which would mean that he has
always lacked the “engineering mindset” to contribute
to software engineering. David Parnas has math and CS degrees,
and so lacks the proper mindset. Clearly, this guideline is silly.

Besides, the report by the Sloan Foundation
http://www.cpst.org/S&E.pdf compares engineering and computer
science mentalities, and finds that they are almost identical.

CCSE
response

Guideline 4 discusses how a curriculum should use recurring
themes to help students develop a “software engineering mindset”.
The emphasis is on the listed topic areas that should recur
throughout a curriculum.

It is true that many mathematicians and computer scientists also
have many of the mental abilities and skills that constitute a
software engineering mindset. So Parnas, Dijkstra, and others the
reviewer mentions, first of all are very sharp minds, founders of the
field, and of course, are fine software engineers. However, there
are plenty of people developing computer systems who don’t think
in terms of measurement, modeling and abstraction, etc. We want
to ensure future software engineers do.

comment 2.1 The phrase “good engineering design” should be “good
software engineering design” to recognize the many non-
engineering sources of design inspiration. Patterns come from
architecture.

CCSE
response

Sorry, we disagree. First, the context of the use of the term “good
engineering design” in this paragraph is clearly identified as in the
field of software engineering. Second, the statement is meant to
appeal to the tradition and experience of the engineering
disciplines in their emphasis on design in the broadest sense of
effective product development.

comment 2.1 CCSE Principles

The term “special professional responsibilities of software
engineers to the public” ignores the fact that all professions have
responsibilities to the public. Which responsibilities are special is
unspecified. I doubt that they exist. The need for curriculum
guidance and assessment and accreditation is necessary for all
professions.

CCSE
response

We agree that such statements could be made about other
professions and they typically “are” made in documents such as
the CCSE volume, in order to emphasize their importance. The
ACM and IEEE-CS have described such “responsibilities” in the
“Software Engineering Code of Ethics and Professional Practice”.

comment 2.1 The phrase “subject to the constraints of available resources”
is a problematic double standard, which allows educators to ignore
their shortcomings away, while practitioners are not given such an
out for their efforts.

CCSE
response

The statement is related to the principle of being “sensitive to
changes in technologies, practices, and applications, new

developments in pedagogy…” Just as software projects have
constraints on resources, schedule, technology, etc., academic
institutions have constraints: they do not have unlimited budgets
for new technology, etc. We certainly hope they have sufficient
resources to keep their programs current.

comment 2.2 The phrase “deliver quality software artifacts” should be
changed to “deliver appropriate software artifacts” to reflect that
engineers deliver all kinds of artifacts. They also make prototypes,
proofs of concepts, and so on, where quality is not the right
adjective.

CCSE
response

Not sure we understand the reviewers point. For example, a
prototype may not be defect free, but for its purposes (e.g., help
elicit customer requirements), one would want it to be of high
quality.

comment 3.1 There are hundreds of billions of dollars spent of software
engineering every year, and more than 600,000 practicing
software engineers in the U.S. Using small numbers serves to
minimize the value of software engineering. If the numbers refer to
software engineers in Canada or Texas, please state the context.

CCSE
response

We have changed the numbers to accord with your data.

comment 3.1 Please find definitions of software engineering that are more
tolerant of the diverse opinions. These definitions are biased
towards the IEEE and SEI. They limit the vision of what software
engineering could be.

The first 2 definitions emphasize traditional engineering, which is
only one possibility, and ignores the many definitions that need not
be biased by such a connection. The Wikipedia entry
http://en.wikipedia.org/wiki/Software_engineering
defines software engineering in terms of technologies, practices,
applications, and community, and so it applies for those who
aspire to traditional engineering as well as those who would seek
other models for the profession.

The 3rd definition emphasizes “systematic” and “quantifiable”
which are classic “scientific management” terms that are closer to
process than to engineering. I am unaware of any important
definition of chemical engineering that uses those terms. Many
modern concepts of software engineering (agile processes and
open source development) cannot be understood in those terms.

CCSE
response

There has been a great deal of comment and discussion about the
definition of software engineering. We have chosen definitions that
are widely used, represent some collective opinion (the Bauer

definition was included partially for historical reasons), and are
helpful in the design of an undergraduate curriculum. Although the
Wikipedia definition of SE (“Software engineering (SE) is the
profession concerned with creating and maintaining software
applications by applying computer science (CS)”) has merit, we
feel it would not provide significant added value to the definitions
used in the document.

comment 3.1 The phrase “in the engineering tradition” focuses attention on
engineering, when almost all fields draw upon a broad range of
disciplines.

CCSE
response

It is true that other disciplines draw on a broad range of other
disciplines. However, we felt, for the purpose of this document, it
was important to emphasize this for engineering in general and SE
in particular: “ … software engineering builds on computer science
and mathematics” and “it goes beyond this technical basis to draw
upon a broader range of disciplines”.

comment 3.1 The phrase “high-quality software in a systematic, controlled,
and efficient manner” is problematic. Using the phrase
“appropriate manner” would recognize that software projects have
all sorts of characteristics, and the ideals vary from project to
project.

CCSE
response

We believe “systematic, controlled, and efficient” are good
adjectives and are appropriate goals for SE practice. Certainly it is
possible to produce high-quality software in an unsystematic,
uncontrolled and inefficient manner, but the business objectives
for the product probably would not be met.

comment 3.2 The implication “Thus, the discipline can be seen as an
engineering field” is spurious. It can also be seen as many other
kinds of fields, which would be mentioned here, were the bias
towards them. Please be more broad minded about SE.

CCSE
response

Since SE has emerged as a discipline in the last 20 or 30 years,
there has been extensive debate and discussion about to what
degree SE is an engineering discipline. We believe that although
SE is not fully formed, it has matured in many ways. The purpose
of this section was to point to the similarities and the differences
between SE and the established engineering disciplines.

comment 3.2 The list of differences should include the economics of projects
(traditional engineering projects are usually overwhelmed by
construction and manufacturing costs), constraints of
manufacturing and construction on change (software changes can
be much faster than rebuilding a house or road), and the very long
history that buried many of the engineering problems in the mists
of time so we forget about them.

 CSE
response

These differences have been incorporated in the list.

comment 3.2.1 I know of many examples from chemical engineering, where

engineers do not follow strict processes. Engineers often work in a
very unstructured way as firefighters to make the chemical plants
and construction projects succeed.

CCSE
response

Noted.

comment 3.2.1 The final paragraph is correctly generous to CS and other
fields that inspired software engineering. Expand on this.

CCSE
response

There are numerous places throughout the document where the
value of CS and other disciplines to SE are noted (especially CS).
This is emphasized in the guidelines, the SEEK, the course
descriptions, the curriculum patterns, etc. We have reinforced this
in several other parts of the document.

comment 3.2.2 I am not aware of any major body of work known as
“engineering design” that describes what software engineers do.
Many other fields do design, too. Software engineers have drawn
from many sources (patterns come from architecture), and so
“software engineering design” should recognize the scope of our
sources. To obsess over engineering design is to deliberately
ignore broader perspectives, which may for example be inspired
by the domain that the practitioner works in.

CCSE
response

We believe that design is a central and crucial activity of software
engineering (sections 4.11 and 4.12 address the core modeling
and design knowledge specified for undergraduates), and that this
section properly discusses the similarities and differences between
traditional engineering design and software engineering design.

comment 3.2.3 This section is too biased towards traditional engineers.
CCSE
response

We believe this section is relevant to issues in software
engineering practice (domain engineering, component-based
development, build vs buy, product-line development, etc.).

comment 3.3.1 Many professions have obligations to the public. Please
state what the obligations are, so that we may know whether they
are engineering obligations or not. The list presented in the
paragraph applies to almost all fields, independent of engineering.

CCSE
response

The next section of the document discusses the Software
Engineering Code of Ethics and Professional Practice, which has
additional detail about an SE’s obligations to the public. It is true
that the list does apply to many fields (in addition to software
engineering); however, in providing guidance to educators, we felt
that it was important to emphasize this area (as has been done in
ACM CS curriculum guidelines for decades).

comment 3.3.1 The last sentence “software engineers need to seek
quantitative data” covers all bases in the murkiest way possible.
Perhaps it should read something like “Like everyone else,
software engineers seek to make appropriate decisions, using
appropriate information, which when appropriate may include
appropriate quantitative data.” The previous version emphasizes

scientific management and contradicts agile and lean processes.
CCSE
response

We agree that the statement may be a bit too rigid and have
edited it to provide more flexibility and judgment about the use of
quantitative data in decision making

comment 4.7 Change “Mathematical and Engineering Fundamentals” to
“Mathematical and Software Engineering Fundamentals”, to
minimize bias towards traditional engineering. Discuss the
“Software engineering” foundations and economics.

CCSE
response

The title was chosen from our list of our foundations: namely,
computer science, mathematics, and engineering.

comment 4.7 Remove the sentences about continuous math and natural
sciences. This implies that software engineering will be taught in
engineering departments.

CCSE
response

Continuous math and the natural sciences are not part of the core
SEEK areas that are recommended for all SE programs. Some
programs however, will want to include such courses (e.g., they
specialize in domains that require such knowledge, they are part
of a college of engineering that requires continuous math and
science courses, or for other historical reasons) There are many
CS programs, which are not part of engineering departments or
colleges, that require calculus and natural science courses.

comment 4.8 Make “Formal Construction Methods” section optional. These
remain areas of research, but have not been proven in practice,
except under special circumstances. When these are proven, they
should become part of the curriculum.

CCSE
response

The level to which such material is recommended is appropriate
for a topic that appears in a significant number of software
development textbooks. Teaching and experiencing rigorous
software development enhances a student’s understanding of the
meaning of their programs independent of whether they may be
asked to apply directly such techniques in the workforce.

comment 4.9 Re-title everything in this section as “Software Engineering
Fundamentals” to avoid bias toward traditional engineering, and
recognize scope of software engineering. Similarly, cite “software
engineering design” and “software engineering sciences”

CCSE
response

The sections that follow concentrate on software engineering,
including section 4.12 devoted to software design. Sections 4.8
and 4.9 describe areas that influence software engineering
knowledge (CS, math, and general engineering).

comment 4.9 The section FND.ef.3 has been shown to be very
counterproductive in practice. People respond much better to peer
pressure rather than to metrics of individual performance. This
principle show archaic “scientific management” practices, rather
than contemporary practices based on teamwork.

CCSE
response

Good point. The emphasis is meant to be on the use of metrics in
making decisions and assessment, not for management to use

metrics to evaluate and an individual’s performance. FND.ef.3 has
been changed to “Measurement and metrics”,

comment 4.10 The sections PRF.pr.1, 4, and 5 contradict the statement of
professionalism in section 3. The topics of “licensing” and so on
depend on the jurisdiction, and what is taught should be clarified.
This appears to require that licensing and the IEEE must be
taught.

CCSE
response

As part of the professionalism of SE, it is reasonable to inform
students of the existence of our professional societies (ACM as
well as IEEE) and the role in which they play. We also believe it is
reasonable to discuss issues surrounding accreditation,
certification, and licensing since they directly affect the SE.

comment 4.11 Modeling and analysis are core concepts of many disciplines,
including marketing, sales, movies, etc.

CCSE
response

This may be true; but the modeling and analysis detailed in this KA
correspond to an SE.

comment 4.11 In line MAA.tm.8, non-functional requirements are rarely
defined in terms of quality. They are “non-functional” requirements.

CCSE
response

We do not understand the comment. MAA.tm.8 is not specifically
about non-functional requirements; it is about requirements
interaction analysis.

comment 4.15 This section is oriented towards CMM and away from open
source project like Linux, that have very different processes.

CCSE
response

We do not agree. The section is intended to cover a spectrum of
life-cycle processes. Specifically the following are listed as
examples: agile, heavyweight, waterfall, spiral, V-Model, etc.

comment 4.15 There should be a topic like PRO.con.8 which covers the
interaction with users, such as how support groups feed user
ideas into the development process, to deal with bugs and new
features. It could also cover the release processes, which are very
different than development processes.

CCSE
response

A judgment has been made about what is appropriate and
manageable for undergraduates. Unfortunately, not all topics
desired by CCSE participants could be accommodated. Some of
topics will have to be left for advanced training.

comment 4.15 Make PRO.imp.7, optional, because it is only one of many
comparable processes. Perhaps it could discuss the diverse meta-
processes instead. Perhaps it could also cover open source and
other kinds of processes.

CCSE
response

We have made PRO.imp.7 more general and have listed
ISO/IEEE Standard as an example.

comment 4.17 Add a new topic MGT.con.6 on leadership.
CCSE
response

Foundation leadership support is provide under “PRF.psy Group
dynamics / psychology” and under “MGT.per Project personnel
and organization”. However, we believe an advanced topic on
leadership would be appropriate after employment and when

career goals are better established.
comment 5.1 The 2nd failure should be to fail to recognize the “software

engineering nature” of software engineering. The current phrasing
biases SE toward something that it is not.

CCSE
response

We have changed “engineering-nature” to “engineering-oriented
aspects”.

comment 5.2 Guideline 4
 The concept of an “engineering mindset” is very disturbing to me.
I do not believe it exists as describe in here, or else computer
science majors already have it. They are already able do
understand measurement, modeling, human factors, scale, reuse,
etc. And, while software engineering and traditional engineering
share many common facets, they also have many major
differences, which are not reflected here.

CCSE
response

We fully agree that many computer science majors already have
an engineering mindset. This must be true since much of the
development of software engineering and large, complex,
successful systems was and is done by those who have been
educated in CS programs. However, not all CS graduates have
the required background; and some CS courses or programs have
tended to downplay engineering-oriented aspects. There are
certainly cases where graduates of CS programs lack critical
knowledge required to develop large, reliable systems.

The fact that software engineering incorporates knowledge from
diverse areas, is discussed elsewhere in the CCSE document.
However, we believe that SE can rightly take its place among the
other engineering fields – the fact that, for example, most other
branches of engineering base designs on continuous, as opposed
to discrete math, does not change the engineering nature of the
design process used, unless you explicitly define engineering to
require the use of continuous math – and we don’t believe it is
reasonable to do that. Similar arguments can be made for other
ways in which SE differs from other engineering branches.

 comment 5.3 Guideline 7
 Software engineering is not necessarily a branch of traditional
engineering. It should be taught so as to make software
engineering into the best profession it can be, independent of the
relationship to traditional engineering. While similarities with other
branches of engineering should be recognized, the differences
should also be recognized. The primary responsibility should be to
the profession of software engineering, not to the profession of
traditional engineering. Software engineers are real software
engineers, and must develop a sense of the software engineering
ethos. Note that the final sentence of this section argues that
software engineering could also be like other professions, or

independent. This guideline is very dangerous.
CCSE
response

This point does not use the phrase traditional engineering. Nor do
we believe there is such a profession as “traditional engineering”.
We do realize that some non-software engineers do not appreciate
the nature of software engineering. But that is a political issue; our
job, as the reviewer says, is to help develop the profession of
software engineering. Considering oneself an engineer (regardless
of what other engineers may think) because one applies
engineering principles is part of that.

This point says, “recognize the similarities”, not “ignore the
differences”.

comment 5.3 Guideline 8

Add cooperation skills, to the communication skills.

CCSE
response

We agree. Change made.

comment 5.3 Guideline 11
This guideline states that everything students learn should be valid
for “10 or 20” years which directly contradicts the notion that the
field is evolving rapidly. Since most software engineers will not
practice for more than 10 years, this means that continuing
education is unnecessary. Perhaps we need to decide whether
software engineering is evolving rapidly or not.

CCSE
response

We have added the phrase “as much as possible”. We still believe,
however, that a field can evolve rapidly, yet foundational
knowledge and experience from older days can still be valid. For
example, although one may have learned to program in COBOL
many years ago, and does not use COBOL any more, having that
knowledge still makes one feel he/she knows something about
programming and languages that could be useful (it if is only,
“don’t develop a language like that”).

comment Guideline 12
 I am not aware of any colleagues who ever had a serious problem
learning new tools. Usually the problem is holding practitioners
back, because the company needs compatibility between all
projects for support purposes. I have never seen this bad habit in
practice. This reinforces the mistaken notion that practitioners are
incompetent and need brainwashing.

CCSE
response

This point was added many iterations ago in response to
contributors who felt that sometimes students are not exposed to
tools, or only to arcane research ones (other than compilers and
editors). We see your point, however, we don’t think we are trying
to brainstorm practitioners; rather we are just trying to ensure that
students use tools, for the reasons given.

comment Guideline 18

This is the classic “synergy” argument that you can magically get a
lot of stuff for free. This argument helped Time Warner to buy AOL
and Disney to buy ABC, which in retrospect were horrible
decisions. I am very skeptical of this kind of argument.

CCSE
response

Point taken. However, not all examples of synergy are horrible.
Other reviewers and participants have agreed that in the context of
education, this point is quite valid.

comment 5.5 Concluding Comment
 Change last sentence to read “with high-quality software
engineering systems” to emphasize the real topic: software
engineering.

CCSE
response

The phrase “software engineering systems” is not a normal
English phrase, whereas “software systems” is. We do not believe
the change is justified.

comment 6.2 The arguments for the SE approach are biased toward
engineering without proof that it is any better than the CS
approach. The text associates “good habits” with SE and “bad
habits” with CS. I am unaware that any CS educator ever
attempted to teach anything but good habits. Certainly all of my
professors tried their best. The text implies that Knuth and Dijkstra
deliberately taught their students bad habits, which is bogus.
Without any supporting studies of resulting behavior, the
comparisons in these 2 paragraphs should be removed. **** Note
that many engineering departments are now teaching project
classes in the first 2 semesters as a way to motivate all of the
theory that will come later. They noticed that dropping students
directly into theory classes encourages them to switch to seek
another major. Thus a better reason to teach the
SE approach first might be “wholistic motivation”.

CCSE
response

You are right to point out that it would be good if everything in the
computing curricula documents were subject to empirical studies.
Unfortunately such is not possible; therefore a lot of what you find
in these documents is the consensus of many experts and
reviewers such as yourself.

 We still agree with the spirit of the distinction between CS and SE
courses, merely because many people have reported that plenty
of CS students come out of CS1 and CS2 with a good ability to
program in the small, but a tendency to not comprehend notions of
scale, etc. Despite this, we have made some changes to tone
down the wording.

Note: We agree, that both, Knuth and Dijkstra were strong
proponents of discipline (i.e., an engineering approach) in
programming.

comment 6.2.1 There is no “engineering perspective” and both CS and SE
can give programming assignments.

CCSE
response

Sorry, we disagree – no change.

comment 6.3.2 There is too much formal methods and not enough practical
stuff like refactoring.

CCSE
response

It has been hard to achieve a balance. There remain those who
feel there are not enough of lots of topics (including not enough
formal methods). This is the typical “10 pounds into a 5 pound
sack” problem. We all agree that we need to cover the
fundamentals, but there is disagreement about what make up the
fundamentals.

comment 6.4.1 Rename this “Software Engineering Economics” to reflect
the software engineering nature of software engineering.

CCSE
response

Many universities already offer a course like this. We felt it best to
reuse where possible. Students will get lots of software
engineering economics-type material in project management
courses.

comment 6.4.2 Avoid engineering bias, and say “appreciation for software
engineering in general.”

CCSE
response

Here we are talking about taking courses outside software
engineering.

reviewer 30000812753 Ricardo Colomo Palacios (Universidad Carlos III)
comment Negative Comments

Using of color-code in course coding scheme. I suggest
using both color and plots instead.

CCSE
response

Coloring schemes have been replaced with differences in shading,
font, and borders.

comment 4.10 Include some references about dealing with multicultural
environments

CCSE
response

There is such a reference in Software Design. We agree that this
is a missing element in Professional Practice and have added it as
“PRF.psy.6 Dealing with multicultural environments”.

comment 4.11 Insert PRF.psy.5 as Related Topic for MAA.er.2
CCSE
response

Recommendation incorporated.

comment 4.11 Delete MAA.er.2 as a Topic reference of itself
CCSE
response

Correction made.

comment 4.17 Insert PRF.com.1, PRF.com.2, PRF.com.3 as a related topic
for MGT.per.2

CCSE
response

Good idea. Recommendations incorporated.

comment 4.17 Insert PRF.psy.1 as a related topic for MGT.per.1

CCSE
response

Recommendation incorporated.

comment 4 Insert in SEEK a KU named MAA.mgt for Requirements
management. In some course descriptions (SE324,SE322) there
is a link to MAA.mgt and such KU is not present in the SEEK
Essential

CCSE
response

It should have been MAA.rfd.6 instead of MAA.mgt. Corrections
made

reviewer 3000093713 Robert L. Glass (Computing Trends)
comment Omissions

There is nothing on these topics: teaching reading of artifacts
before teaching about writing them (especially code)
requirements-driven testing (this should be the minimal level of
testing for all software products) structure-driven testing (this is
obliquely covered by the discussion of test coverage, but it needs
to be addressed more directly)

CCSE
response

“Reading before writing” is a pedagogical approach that could
clearly be adopted in CS 101. For example, such an approach is
discussed in SE 102 under “Additional teaching considerations”.
Also, Curriculum Guideline 4 encourages such an approach by the
emphasis on studying existing software artifacts.

Requirements-driven testing is covered under VAV.tst.8.

VAV.tst.3 has been re-titled to “Coverage analysis and Structure
Based Testing”

reviewer 30001015792 Kai Qian (Southern Polytechnic State U)
comment Omissions

The V & V case tools and evolution case tools such
as tools for configuration management should be addressed.
Software security should be emphasized in All phases.

CCSE
response

Although tools are not explicitly addressed in the SEEK,
Curriculum Guideline 12 in Chapter 5 asserts “Performing software
engineering efficiently and effectively requires choosing and using
the most appropriate computer hardware, software tools,
technologies, and processes (again, collectively referred to as
tools)”. This section describes issues and guidance for selecting
appropriate tools.

Section 4.18 on “Systems and Application Specialties” has several
units on security and there are other references, implicit and
e3xplicit, throughout the document (e.g., MAA.tm.2, MAA.af.3¸
DES.con.6, VAV.tst.9, etc.)

reviewer 30001127550 Maurizio Fenati (AICA)
comment Omissions - Security basics as preliminary not only as domain

specific (see SAS.net.3, SAS.fin.3, etc...).
CCSE
response

Addressing security issues appear throughout virtually all of the
KAs.

comment FND.mf
 FND.mf (Mathematcial fundations) It has few hourse (only 56)
considering its importance; I will add Logic arguments. Indeed
Algorithms, Data Structures/Representation (static & dynamic) and
Complexity should be reviewed/assessed (unless CMP.cf is pre-
requiste to FND.mf) in this context in order to introduce
Combinatorial and Optimizations problems (primal & dual simplex,
Lagrange curve utilization, etc...).

CCSE
response

These hours are particular to Mathematical Foundations, which
are part of the SE core. There will certainly be more hours devoted
to mathematics as part of the degree.

comment PRF.pr
 PRF.pr (Professionalism) I will mention Open Source definition
and GNU General Public License.

CCSE
response

These topics could be raised as part of PRF.pr.3 and PRF.pr.6.

reviewer 30001214638 Jurgen Borstler (Umea University)
comment Appendix A: SE400

Required team size should be at least 4.
Teams of two can be easily confused with the currently so popular
pair programming approach. Two people are usually not sufficient
to experience team dynamics. In the literature 4-7 is often
mentioned as a common team size.

CCSE
response

Since there are enough people who feel that a capstone project
can be done with fewer than four, we are leaving this unchanged.
In fact, we received a comment by another reviewer who insisted
that capstone projects be done individually.

reviewer 30001328441 Ana Moreno (Universidad Politecnica de Madrid)
comment International adaptation issues

Main differences among the different countries, mainily in English
speaking countries and european countries is the accreditation
police, in most european countries (with the exception of UK)
accreditation is done before a program is running and it is done
usually by the State.
Therefore in Section 8.2. it might be worthwhile to mention that the
accreditation issues mentioned in it refer to those countries where
accreditation is done after a program is running. But there are
many other countries where such accreditation is done, by the
State according to an official syllabus, before a program starts

running. However, CCSE might also be used in those cases as an
inspiration for any official syllabus.

CCSE
response

Good point. The recommendation was incorporated into the
discussion in section 8.2 of assessment and accreditation.

comment 4.10 Increase the hours assigned to Professional Practice.
Teaching about teamwork, negotiation and stakeholders
interaction techniques are important for developers and of
practical utility in their professional practice. I guess that if we
compare such knowledge with for example, professionalism,
although the last ones are also relevant, possibly the first ones
have more practical utility and have 1/4 from the time assigned to
professionalism.

CCSE
response

You will find some of the issues you raised in other KAs such as
MAA and MGT, which increases the amount of time devoted to
such activities.

comment 6.3
Explicitly mention the reasons that provoke the two core
SE course sequences.
In the document it is mentioned might be different course
alternatives for a SE undergraduate program but the final
knowledges should be similar. In the second approach I did not
identified Requirements course related. Is there any reason for
that?

CCSE
response

We have modified this section to address these concerns.

reviewer 30001521698 Rick Duley (Murdoch University)
comment NT181 etc.

If NT272 and NT291 were amalgamated to one full course
and NT181 expanded to another full course I think the balance
would be better.
Otherwise, great job folks! As we say in Oz, "Gudonyer!"

CCSE
response

An institution could certainly do this. However, many institutions
have existing courses, especially for NT 272 and NT291, which we
think do a good job.

reviewer 3000166654 Bill Hefley (Carnegie Mellon University)
comment 2.2 [5] pp 12

Add "documentation, " after "implementation, "
CCSE
response

The addition was incorporated.

comment 2.2 p 13
Add "[8] Learn to practice software engineering with an
appreciation of ethical, privacy, and security issues."

CCSE
response

Wording was added to outcome [1], which emphasizes that it is
important that SEs appreciate and understand issues related to

ethics and professional conduct, societal needs, etc. Security was
addressed under [4].

comment 4.9 Add FND.ec5 Risk management
Inadequate preparation in foundations to specifically deal with
probabilistic risk analysis. Needed as foundation for software
management topic on risk management.

CCSE
response

This topic appears in both MAA and MGT (MGT.pp.6 Risk
management). It would also be reasonable to teach as part of
FND.ec.1.

comment Chapter 5 - Guideline 4
 Add "ethics" as a bullet in this list
 Ethical considerations is not a topic that should be addressed
once as an isolated management or professionalism topic, but
must be repeatedly addressed in the context of numerous systems
and software engineering activities. Consistent with Guideline 15.

CCSE
response

We certainly agree with the point, but believe that guideline 15
already does what is needed. Guideline 4 (just before the bullets)
points out that the bulleted list is “in addition to ethics … which will
be highlighted specifically in other guidelines”

comment Chapter 5 - Guideline 8
Add "Behaving ethically and professionally. Students should learn
to behave ethically and to understand the ethical, privacy, and
security implications of their work."

CCSE
response

We agree, and have added a bullet with the recommended
wording.

reviewer James Moore (Mitre Corporation)
comment 4.6 Selection of Knowledge Areas

"Although the SWEBOK did serve as a starting point for
determining knowledge areas, both the CCSE Steering Committee
and the SEEK area volunteers felt strongly about emphasizing the
academic discipline of software engineering. During the SEEK
development process, the area chosen to represent the theoretical
and scientific foundations of developing software products
subsequently grew to the size of one half of the core. This
prompted the Steering Committee to reevaluate whether the
original goals of emphasizing the discipline were indeed being
met. The resulting set of knowledge areas are believed to stress
the fundamental principles, knowledge, and practices that underlie
the software engineering discipline."

Terms like "although" and "but" provide a sense of repudiation,
although I doubt that any is intended. I would like to suggest a
minor rephrasing of this passage as follows:

<The SWEBOK Guide provided our starting point for determining
knowledge areas. Because both the CCSE Steering Committee
and the SEEK area volunteers felt strongly about emphasizing the
academic discipline of software engineering, the area chosen to
represent the theoretical and scientific foundations of developing
software products eventually grew to one half the size of the core.
This prompted the Steering Committee to reevaluate whether the
original goals of emphasizing the discipline were indeed being
met. The resulting set of knowledge areas were rebalanced to
support these goals. The result is believed to stress the
fundamental principles, knowledge, and practices that underlie the
software engineering discipline in a form suitable for
undergraduate education.>

CCSE
response

We think the recommendation is excellent and have incorporated it
in the CCSE volume.

