
Review Comments for
CCSE Volume (first draft- 7/17/03)

This document represents the response to reviewer comments to a public call for
review of the CCSE Volume (draft 7/1/7/03). The review period extended from
July 2003 through September 2003. Each comment is paired with a response
form the CCSE Steering Committee. In most cases the reviewer comment is
quoted verbatim; however, in some cases the comment was summarized or
abbreviated to improve document readability. There were a number of comments
about grammar and style that were not included below, but were used to improve
the CCSE Volume. The CCSE Steering Committee is appreciative of the careful
and thoughtful review by the reviewers; we feel their comments and suggestions
have produced a much-improved document.

reviewer 200017959 - William Griswold
comment I have deep concerns about drawing a Science/Engineering

distinction between Computer Science and Software Engineering.
CCSE
response

There has been great debate about this issue; but the decision to
have separate CS and SE volumes partly motivates the position
taken in the SE volume. Some wording was changed in Chapter 3
to better emphasize the relationship between CS and SE.

reviewer 2000184579 - Helen M Edwards
comment Very clearly written, giving a coherent rationale for the need for the

volume and the mindset needed by those who wish to develop u/g
SE programmes.

What I particularly like is that the volume gives an impression of
self-confidence in SE as being truly an engineering field. Too often
in the past SE has been defined in terms of computer science and
aspirations to become an engineering discipline.

I think that the current document is as clear as it can be about the
variations that may exist in other countries. I am not sure further
adaptations would be beneficial (the eventual documentation
would be so complex that the benefit of additional adaptations may
well be lost).

CCSE
response

Noted.
We feel the adaptations are helpful and extra ones are provided,
since they are only very simple grids in Chapter 6.

reviewer 1928432 – Matthias Felleisen
reviewer
comment

Need to add the semantics of programming languages

CCSE
response

Modifications made.
We agree with the importance of understanding the semantics of

programming languages. It is unfortunate that this topic is not even
part of the required core of the CCCS. It is now listed as one of the
desired topics in the CMP KA.

reviewer 2000209673 - Larry Bernstein
comment The emphasis on quantitative analysis is good. The focus on

ethics, teamwork and human communications is on target.

More emphasis on sampled data control systems is needed
including feedback control analysis using Z-transforms or Discrete
time math or eigenvalues.

For Requirements- Quality Function Deployment
For Architecture- Simplification Techniques and Metrics and the
reliability equation.
For Design- Sampled Data Feedback Control
For Testing- Orthogonal Array Theory and its application to test
case reduction
For Maintenance- Structure analysis to simplify build or execution
design using visualization techniques

CCSE
response

Control issues are part of the “Specialties and Their Related
Topics” of the SEEK. We did not feel it should be essential
knowledge for all programs, but some specializations would
require it.

reviewer 20002127960 - Robert L. Glass
comment 4.8 I don't see recursion as a programming fundamental.

OO run-time issues seem a peculiar topic, given that
methodologies in general have not been mentioned here.
"Hot spot" analysis is too limiting. This should be "performance
analysis tuning."

CCSE
response

Recursion appears in CMP.cf.1. The emphasis on OO run-time
issues stem from the interpretation of polymorphism. The last
issue has been incorporated.

comment 4.8 Automatic generation of code is hardly worthy of inclusion.
It's been identified for more than a decade as a "cocktail party
myth."

CCSE
response

Such tools do indeed exist; however, their application is indeed
very limited.

comment 4.9 Studies of practitioner math needs show this area to be
needing further research analysis. I would suggest that this whole
section be labeled "work in progress" until that research has been
completed.
Empirical/experimental approaches should be about more than
"CPU and memory usage."

CCSE Given what we know today, this section is appropriate. If future

response analysis shows that this KA is not appropriate, then it will surely be
rewritten. As with almost all of our parenthesized phrases, the
items listed are meant to represent examples, not an exhaustive
list.

comment 4.12 The "design for..." quality attributes should include
maintainability.

CCSE
response

Maintainability is certainly an example of a quality attribute.

comment 4.18 The financial/e-commerce section has no sub-topics on
e-commerce.

The safety-critical section implies that formal/proofs are the only
way to ensure safety. (a) this has not been shown to be true, and
(b) there are lots of other vital techniques.
Embedded/real-time places too much emphasis on hardware.

Under scientific systems, it should list "depth in applied
mathematical
approaches."

CCSE
response

The specialty areas are certainly not meant to be detailed (even
the list of potential areas is not meant to be complete). We strived
to list only a couple of pertinent topics for each area.

comment 4.16 The quality attributes should explicitly include maintainability.
CCSE
response

The description has been changed to include maintainability – it
was added.

comment 5.2 Somewhere in this section, there should be a discussion
of teaching "programming in the large" when classroom exercises
can only be "programming in the small." This could be under
"outcomes," where an outcome should be the ability to program in
the large event when the student has only marginally tried out this
skill.

CCSE
response

Added as a recurring theme in guideline 4.

comment 6.2 Somewhere here there should be a discussion of the merits of
teaching "reading before writing." We do that in all other language
fields, yet we resist it in computing/software.

CCSE
response

An adjustment to guideline 4 has been added in response to this.
Also a recommendation has been added to SE200 and SE201 that
students work with existing systems.

reviewer 20002216441 - Garth Glynn
comment I think that some of the introductory sections, viz. chapters 3 and 5

contain some excellent material. I am particularly in favour of the
guidelines in 5.1

CCSE
response

Noted.

reviewer 20002316684 - Luisa Mich
comment 2.1 Items 5 and 6: couldn’t these be merged
CCSE
response

We agree that these principles are related, but feel address
distinct concerns: [5] speaks to curriculum structure and [6] to the
knowledge on which the curriculum would be based.

comment 2.1 Item 9: must be multi-perspective instead of must be broadly
based

CCSE
response

By the term “broadly based” we mean not only multi-perspective,
but based on various stakeholders that may have a similar
perspective (e.g., come from different sectors, as indicated in the
second sentence).

comment 2.2 item 2: quality executable artifacts instead of executable
artifacts

CCSE
response

Item 2 was changed to reflect “quality artifiacts”.

comment 2.2 Name the items, e.g.:
[1] Core knowledge,
[2] Individual-group work
[3] Project management
[4] Multi-concerns design
[5] Change management/empirical-defined process models (split
this point in two)
[6] Relational abilities
[7] Long-life learning

CCSE
response

We are not sure of the value of using such labels; references in
other parts of the document using section and outcome number
seems to work fine. However, we have added additional text to
each outcome to elaborate on the meaning of the outcome.

comment 3.2.1 Figure 1 - box the two parts before and after the arrow
Couldn’t it be useful to add something more about e-learning
experiences (or platforms) benchmark for SWE

CCSE
response

The figure has been eliminated.

reviewer 20002629178 - Vladan Jovanovic
comment CMP.f11

Add SQL and XML
change c to a

CCSE
response

This topic is listed in the same level of detail and at the same
Bloom’s level as networking.

reviewer 2000278704 - Dino Mandrioli
comment Positive Comments

All in all, I like it: I like the rationale, the principles, the guidelines,
the structure, and the presentation.

Negative Comments
I am rather unhappy with the way you address the issue of SE
within the whole engineering context. As a premise, let me say
that I very much agree (at least 90%) with Ilia Bider comments to
previous drafts, which could be summarized as “there is too much
SW and too little Eng.” Thus, I do not repeat his (her) arguments.

CCSE
Response

There has been great debate about the issue related to the proper
balance between CS, SE and general engineering knowledge and
pedagogy. We have tried to strike an appropriate and useful
balance for undergraduate SE programs.

comment … if one has learned the essence of analysis, there
is no need to devote so much time to requirements elicitation,
specification, validation, then again to V&V, etc. I agree that a
serious, though difficult, application of curriculum guidelines 4 and
18 can strongly mitigate this criticism but I also ask whether
courses such as SE321, SE322, SE323, etc. are good examples
of application of these guidelines.

CCSE
Response

We believe that all courses should be able to incorporate the kind
of interdisciplinary approach and synergy expressed in these
guidelines.

comment Finally, a few words about Professional Practice. Here I have
mixed feeling.
I agree that there are important “non technical” skills, such as
communications skills, that must be possessed by, and -one way
or another- taught to, everybody (can you imagine a lawyer who
cannot participate actively in a meeting); but I wonder how much
of such skills can and should be taught and learned in a university
curriculum. … I also acknowledge that such skills are often
lacking in most students and even in various professionals and
therefore something has to be done to fill up this hole; but, to give
a concrete example, I seriously doubt that devoting 20 class hours
(!) to issues such as accreditation, code ethics, professional
societies, etc. will do a better job than simply emphasizing the
relevance of such issues in 2 hours. Thinks less time could be
spent on many professionalism topics.

CCSE
Response

There is disagreement on this item. Hopefully, the new course
descriptions in Appendix A will show the value of this material.

reviewer 20002827999 - Deepak Dahiya
comment A 1 unit credit optional course on an management module

needs to be included The course can have topics ranging from
organization role, cross -culture work environments, outsourcing
that all Software Engineers cannot ignore in this global industry.

CCSE
Response

The CCSE focuses on the core material needed in an
undergraduate SE program; hence, there are many potential

optional topics that have been left out. However, at their option,
designers of SE programs could easily incorporate the reviewer’s
recommended material in some of the course that are outlined
(e.g., NT272 Engineering Economics or NT291 Professional
Software Engineering Practice).

reviewer 2000292630 - Jonathan Hodgson
comment First I think that some material on security, particularly

design for and coding for security needs to be in the core. Places
where you might put it are QUA, FND, DES or PRF. Or perhaps all
of these. I know it appears in FND 4 but very much in passing. It is
more important than that.

CCSE
Response

While security issues have been increasing in importance, little is
found in current undergraduate curricula on it (which most likely
explains why little to no reference has been found in other KAs).
As the exposure to security issues increases in the classrooms, it
will also be found in more KAs.

reviewer 2000306639 - Duncan Hall
comment 3.3.1 Last sentence to include wording such as "desire to seek

verifiable quantitative data on which to base decisions yet also
able to function effectively in an environment of ambiguity"

CCSE
response

Good point – incorporated in section 3.3.1.

comment 3.3.2 Some coverage of the dilemmas facing professional
engineers in employment situations such as ethics and
implications of "whistle blowing" might be useful for example.

CCSE
response

Agree – incorporated in last paragraph in section 3.3.2

comment 3.3.3 Need to address the need to be aware of the limitations
of "formula-based" modeling.

CCSE
response

Good point – incorporated in section 3.3.3.

reviewer 20003129876 - Maurizio Fenati
comment … add 'Optimization Models & Theory basics' reference

as well as 'Mathematical Analysis basics' one within
'Mathematical and Engineering Fundamentals' area.

CCSE
Response

The topic ‘mathematical analysis’ can be found in the listed
mathematics courses. An operational research topic as
‘optimization models & theory’ was not judged to be necessary
knowledge for all software engineering graduates.

comment It should be considered 'Business Modeling' discipline, even if I'm

not sure if 'Software Modeling and Analysis' area will fit. According
to RUP (standard 'de facto') this discipline describes how to
develop a vision of the new target organization, and based on this
vision define the processes, roles, and responsibilities of that
organization in a business use-case model and a business object
model.

CCSE
Response

It is not clear what is being asked to be added where but ‘Business
Modeling’ is mentioned under MAA.tm.6 – Enterprise modeling.

reviewer 2000322716 - Tony Cowling
comment 3.2.1 item 3 - Either here, or as a separate item in this list,

reference should be made to the importance for engineers of
recognizing and using good approximations.

CCSE
response

agree – recommendation incorporated

comment 3.2.1 item 12 - Add a forward reference to section 3.3
CCSE
response

There has been extensive revision to this section and item 12 is
not longer in the list.

comment 3.2.2 Add at least some discussion of whether implementation
should play such a large role in SE as is indicated here, or
whether it is likely to continue to do so.

CCSE
response

There has been extensive revision to this section and there is now
not an emphasis on “implementation”.

comment 3.3 Add near the start of the section some explanation of the
significance of the engineer being a professional - viz, that it
requires them to apply specialist knowledge on behalf of members
of society who do not themselves have that knowledge.

CCSE
response

Agree – recommendation incorporated

comment 6.3 Another guideline is needed here, concerned with
emphasising to students the importance of recognising the
limitations of current knowledge of SE, and of applications of that
knowledge to the real world (meaning here both limitations in
general, and their individual limitations).

CCSE
Response

Agree - this issue has been addressed with changes to guideline
8.

comment 6.3 Another guideline is needed here, concerned with
emphasising to students the importance of evaluating, challenging
and seeking to improve on statements of "received wisdom".

CCSE
Response

Agree - this issue has been addressed with changes to guideline
8.

comment 7.3.3
Add more discussion of the relative merits of group or
individual projects.
Add more discussion of the relative merits of internal or
external clients.

CCSE
Response

These issues have partially been addressed in the Appendix A
description of the capstone course. A section on “Additional
teaching considerations” has been added.

comment 7.4.2 Add a reference to the importance of calculus in any form of
optimisation.

CCSE
Response

Agree - change made

comment Appendix A - Here (or earlier) it would be helpful to also have a
mapping for each package defined in 7.2 or 7.3, to show how
these packages cover the SEEK (and hence what they do not
cover).

CCSE
Response

Each of the courses in Appendix A includes information about
SEEK coverage and the curriculum patterns are intended to show
examples of complete SEEK core coverage.

comment Appendix A - Here (or earlier) for each course the "learning
objectives" that are referred to in the note must give as much
emphasis to what bits of SE students are able to do when they
have completed it, as to what they will know.

CCSE
Response

Agree - learning objectives added to course descriptions in
Appendix A.

reviewer 20003328180 - Andrey A. Terekhov
comment This is a great basis for development of software engineering

education programs. In particular, SEEK is a wonderful reference
for designers of courses and curricula.

CCSE
response

Noted.

comment I believe that the only deficiency of the volume at the time of
writing is the lack of evidence about the true value of various
approaches to teaching software engineering.

CCSE
response

This is good point. Unfortunately, the state of software
engineering education research is relatively immature. We do site
a number of papers in the Bibliography about SE education; but
there is very little rigorous, definitive, widely accepted material.
The information here is based on expert judgment ... as people
implement the suggestions, undoubtedly flaws will be found, to be
corrected in future iterations.

comment One of the major issues in adapting Computing Curricula
documents to Russian realities is the difference in duration of the
education programs - typical Russian student in technical sciences
graduates from the University after five years of study with a
degree that is closer to M.Sc. than to B.Sc. and is called "specialist
with a degree".

CCSE We would be glad to incorporate a suggested plan using the

Response courses provided here.
comment Section 5, guideline 6 - Specifically mention system programming

and other CS-related topics as possible domains for specialization
of software engineers. This change is related to the global
question of relationship between Computer Science and Software
Engineering, which (in my opinion) is not properly highlighted in
this volume.

CCSE
Response

The CCSE volume has been revised to emphasize on the relation
between CS and SE

comment Section 6.2 Add discussion of various approaches to teaching
mathematics in the introductory sequences

CCSE
Response

We feel that the discussion of mathematics in section 6.2.3 is
sufficient. We do not feel that a detailed discussion mathematics
pedagogy is appropriate at this point in SE curriculum
development.

reviewer 20003418575 - Carl J. Mueller
comment The standard and proposed curriculums generally put

a minimal emphasis on “continuous mathematics” and other “hard
sciences”. I feel this is a major mistake.

CCSE
Response

The CCSE is meant to guide and support a variety of programs,
with different foci and domains of emphasis. Some patterns
support a stronger background in mathematics and hard science
than others. We suggest calculus is useful for many domains and
should generally be taught in most adaptations.

comment It is understandable that there would be differences in the four
computing disciplines (Computer Science, Software Engineering,
Computer Engineering and Information Technology), but there are
many places where these programs intersect.
Using a common nomenclature would permit instructors and
authors to more easily identify the common components of these
programs.

CCSE
Response

We have used material and notation from the CCCS volume, but
there is currently no detailed coordination for all the volumes.

comment The thing that most concerned me about this proposed curriculum
standard is the organization of Software Engineering body of
knowledge within the draft.

CCSE
Response

Hundreds of SE practitioners and educators were involved in the
development and review of the SEEK. Major revision at this point
would be difficult.

comment Also, I could not find any direct mention of metrics in the standard.
It is important that students have a basic understanding of the
different types of metrics that can be derived from very simple
measures.

CCSE Metrics and measurement are listed throughout the SEEK and are

Response incorporated in several courses.

reviewer 2000359873 - Tim H. Lin
comment 5.3 Curriculum Guideline 15: Ethical Concerns, and the notion

of what it means to be a professional, should be raised frequently.
=> Ethical, legal, and financial (economic) concerns, and the
notion
of what it means to be a professional, should be raised frequently.

CCSE
Response

Agree – change made.

comment 5.3
Add a new Guideline on design and coding style, in particular
naming convention, coding standard.
Add a new Guideline about teaching software portability.
Add a new guideline about how capstone projects are conducted
and also how to evaluate the success of capstone projects.

CCSE
Response

We feel that these topics are too specific for curriculum guidelines.
Such issues are addressed in the SEEK and the curriculum/course
content sections.

reviewer 20003627382 -Tony Wasserman
comment 3.4 Add additional historical background to give a more complete

and more accurate picture of the origins of software engineering
education. Cite early workshops, including D.A. Oakes (et al.), SE
Education: Proc. IBM Scientific Symposium, IBM Canada, 1975,
and A.I. Wasserman and P. Freeman (eds.) Software Engineering
Education: Needs and Objectives, Springer Verlag, 1976. Cite first
paper laying out foundation for SE Education: Freeman, P. , A. I.
Wasserman , R.E. Fairley, Essential elements of software
engineering education, Proc. 5th Int. Conf. on Software
Engineering, San Francisco, 1976, pp.116-122.
Cite first paper laying out proposed curriculum for SE Education:
Freeman, P. and A.I. Wasserman, Proposed Curriculum for
Software Engineering Education, Proc. 3rd Int. Conf. on Software
Engineering, Atlanta, 1978, pp.56-62. Cite IEEE Computer Society
SE curriculum development effort circa 1978; information available
from Prof. David Rine at George Mason University
(drine@cs.gmu.edu)

CCSE
response

Agree – recommendation incorporated.

reviewer 3721379 – Robert L. Ashenhurst
comment Blurred distinctions between requirements, specification, and

design in the Software Modeling and Analysis KA. Reviewer

proposed that each use of the term “requirement”, “feature” and
“model” in this KA be prefaced with either the word “informational”
or “operational”.

CCSE
response

Noted.
After the third review of the SEEK, we determined that all types of
modeling would be moved to the Software Modeling and Analysis
KA, independent of when and under what circumstance the
modeling was being performed. While other partitioning of the
types of models can be made, the Steering Committee, with input
from an IFIP working group, felt that this grouping was the best
approach.

reviewer 20003814659 - Rob Hasker
comment 2.2 (p. 10) Soften outcome [4]; keep the bit about graduates being

able to "design appropriate solutions ... using engineering
approaches" but revise the bit about integrating ethical, social, and
other concerns.

CCSE
response

Although the “integrating” part is difficult we feel that it is important
and is consistent with various accreditation criteria.

comment 3.2.1 (p. 13) Change "may be significantly wider than in other
branches" to "are at least as broad as other branches".

CCSE
response

There has been a major rewrite of this section and the above-
mentioned phrase is no longer in the document.

comment 3.2.1, Fig. 1 Add more notation to show the proposed
relationships.

CCSE
response

The Figure has been eliminated.

comment 5.1 (p. 37) Revise the recommendation for certification in the third
bullet item under "curriculum designers and instructors should
therefore".

CCSE
response

CSDP was explicitly introduced to address that problem. The
Guideline 1 elaboration was modified to say "... have, or work
towards", since otherwise some smaller programs would have a
hard time getting established.

comment 5.1 (p. 37) Soften the prohibition against introducing bias for
particular applications of SE in early courses. This is in the first
bullet item under "Failure to adhere...".

CCSE
response

Agree – recommendation incorporated.

comment 5.3 (p. 40) Curriculum guideline 10, first paragraph: clarify what
the alternative is.

CCSE
response

Agree – recommendation incorporated.

reviewer 2000394949 - Vincent Chiew
comment Maybe this document can provide some guidance to hiring

and acquiring quality instructors to achieve the aim the goal of
CCSE
Maybe this document can provide equivalency of qualified course
so the appropriate instructors can be hired
Note: The knowledge quality learnt depends largely on the
instructor teaching the courses.

CCSE
response

We agree this is a problem; however, most of such material is out
of the scope of this document – some of this is addressed in
chapters 6 and 8.

comment Maybe this document should mention possible customization
and tailoring of its contents as apply to the different businesses,
industries, countries, and management styles. A SE graduate
should be fully equipped with sufficient knowledge to adapt and
accommodate any work environment presented or encountered.

CCSE
response

We believe this is adequately expressed (within the scope of the
document). Additional programs for countries have been added in
chapter 6.

comment 3.2.1 [1]& 5.3 Guideline 10. Engineering is about satisfying
customer needs.

CCSE
response

Agree – recommendation incorporated
Note: Could replace “solving customer problems” by “solving
customer problems and satisfying stakeholder needs”

comment 3.2.1 [13] Add to that, the business and industry knowledge
CCSE
response

 “methods, techniques and technology” is mean to be domain
independent and certainly could and should include “business”
elements.
Note: Maybe the intent of the comment is to say engineers should
have a “business/industry” orientation – this should be a separate
characteristic.

comment 5.1 Failure to adhere to this principle ... Bullet point
3: It should be noted that SE should not claim to be knowledge
expert in other knowledge domain too.

CCSE
response

Agree – recommendation incorporated.

comment Chapter 5 - Please note that these days many new SE graduate
student might not have a SE undergraduate degree. The
curriculum should either consider this situation or make it a pre-
requisite such as having the student from another discipline to
take some basic SE core courses

CCSE
response

The CCSE Volume is focused on undergraduate SE programs.

comment General - Maybe an institute can consider having their SE
curriculum approved by IEEE by having IEEE/ACM CCSE seal of
approval.

CCSE
response

Accreditation issues are addressed in chapter 8.

comment 7.1.2 Please consider mature student returning to school not
only for upgrade but as part of their professional development.

CCSE
response

Professional development is not part of the scope of the CCSE.
The focus is on undergraduate degrees.

reviewer 2000416971 - Cem Kaner
comment The assertion that we will give students real-world experience

in a classroom is implausible. We give them artificial experiences
that may be educational but that do not begin to approach the
complexity, time commitment, or consequences for weak work as
occur in the real world. Based on the faulty assumption that we will
give students "real world" experience, the curriculum assumes that
the students will reach a level of maturity to appreciate
heavyweight process models. Most will not. They might memorize
them. Some might adopt them as an act of faith. But others will
learn contempt for the heavyweight processes because they are
being taught out of context.

CCSE
response

We agree to an extent. However, the document (particularly
guideline 14) attempts to increase the level of real-world exposure,
which is better than having none. Also, there is no attempt to focus
on “heavyweight processes” (or for that matter on agile
processes).

comment 2.2 Delete student outcome, "Negotiate, work effectively,
provide leadership where necessary, and communicate well
with stakeholders in a typical software development environment.”

CCSE
response

The outcome is changed so that is appropriate for an
undergraduate.

comment The document stresses too much that software engineering is a
defined profession. It is not. We have widespread disagreement
on the body of knowledge, the choice of lifecycle, and several
other process decisions. Within the drafting group, there was
sharp disagreement over whether software testing should even be
taught, for example. The IEEE process standards have limited
impact in most commercial software development, and less
recognition, but are presented here as core process standards.
I think it is widely believed among practitioners that software
engineering is a craft that is perhaps on its way to gradually
becoming a profession. A curriculum guide should not push an
essentially political position that adopts either of these positions
(or another).

CCSE
response

There has been much debate over this issue and there have been
some changes in Chapter 3 that partially address these concerns.

comment 4.9 – Add calculus to required core material.

CCSE
response

While it is true that most NA programs require calculus, there are
many other programs that do not. In particular, we do not find
evidence from the topics listed in the SEEK that one year of
calculus study is required. That said, we do list calculus as one of
the possible university required mathematics courses.

comment 4.10 – Rework the section titled “professionalism”
CCSE
response

One modification made. We believe the topics of professional
societies, certification, and licensing should be known by students.
The suggestion of adding “employment contracts” is a valuable
addition to this list.

comment 4.13 – Reconsider how measurement is taught
CCSE
response

Modification made.
The topic of “criteria of valid measurements” was added as
FND.ef.6

comment 4.13 – Drop the section VAV.fnd; the time would be better spent
teaching people the methods of actually doing it.

CCSE
response

“Teaching people the methods of actually doing it” still requires
some level/amount of introduction to the method. This unit is not
meant to be treated as a single model/lecture but as an
introduction to the salient topics in this particular knowledge area.
When the introduction is provided will depend upon the structure
of the actual module/course taught.

comment 4.14 – Eliminate the section on software evolution
CCSE
response

Noted.
While only 10 hours of core hours of material has been devoted to
evolution, this KA is essential knowledge that an undergraduate
student must possess. It is true that the amount of time limits the
depth and complexity that a student might experience with this KA,
we believe that applications of this material might be incorporated
within other projects. The selection of material and number of
hours was provided by a renown expert in software maintenance,
so the Steering Committee will support his judgment.

comment 4.15,4.16 Cut back on the process training
CCSE
response

The amount of material devoted to the KAs of Software Process
and Software Quality certainly reflects the inability for student’s to
gain a rich set of experiences using such processes at the
undergraduate level. Since this is most likely a student’s “first”
exposure to disciplined software development, it is important that
they are aware of and potentially use/apply some portions of
process models and the creation of work products with certain
quality attributes.

comment 4.17 – Reduce software management to a weak section on status
reporting and a strong section on configuration management.

CCSE
response

The proposed change would cause a significant reduction in
project planning. It is in this unit that all the topics at the
application level are found! Almost all SE programs have a senior

yearlong capstone project and several other smaller software
development projects. It is this section on planning that is quite
useful for students – in particular since most of them have never
planned for a group outcome before.

comment 5.1 Drop the requirement that curriculum designers and instructors
should have deep and broad knowledge of SWEBOK

CCSE
Response

We believe that curriculum designers and instructors should be
aware of the SWEBOK contents, but the emphasis on required SE
knowledge is in the SEEK.

comment 5.1 Drop the reference to CDSP.
5.3 Drop the reference to "widely accepted best-practice."
Found the curriculum in case studies that illustrate successful and
unsuccessful practices -- that is, in actual experience -- rather than
in context-free summarizes marketed as "best practice."

CCSE
Response

Guideline 13 has been adjusted to clarify, along the lines the
reviewer suggests. The term 'widely accepted best practice' has
been kept though.

comment 5.2 Drop the fiction that we are giving the students real-world
experience, and accept the consequences of abandoning that
fiction. Take Guideline 5 seriously and drop material that the
typical software engineering undergrad will not mature into prior to
graduation.

CCSE
Response

Some adjustment has been made to Guideline 3. It is not clear
what other wording changes the reviewer would suggest.

comment 5.3 Reword Curriculum Guideline 15 to push less vehemently the
notion that software engineering is a defined profession.

CCSE
Response

There has been much discussion and debate about the degree to
which SE is or should be considered a “profession”. There have
been modifications in chapter 3 to better relate to the emerging
nature of SE, and we believe we have struck the proper balance
on this issue.

comment 6.3.2 SE221-tes. Fix this description. A broad survey course,
which is what you are proposing, is not in-depth. I would
recommend instead an in-depth course that covers several
aspects of testing but focuses the student either on customer-
benefit (e.g. system-level black box) testing or on programmer-
focused testing (e.g. unit testing, low-level integration testing,
profiling, test-driven development). The course should build skill
and experience in the student, preferably with production
code.

CCSE
Response

There is a new description of the course. All descriptions are now
in the appendix. This reviewer may wish to comment in detail, in
the final review cycle.

comment 6.4.1 Drop NT291.
CCSE
Response

We have kept NT291, but the suggested content has been added.

reviewer 426159 – John Walz
comment 3.2.1 Figure 1. Obscure relationship Either remove Figure or

modify by removing red color, adding other connectors besides
single double-headed arrow

CCSE
response

The figure has been eliminated.

comment 4.15 – Replace ISO/IEEE Standard 12207:requirements of
processes with ISO/IEEE 12207 Software Life Cycle Processes:
requirements of processes

CCSE
response

Modification made.

comment 4.16 – Replace ISO 9000 series with ISO 9000 Quality
Management Systems and replace ISO/IEEE Standard 12207 with
ISO/IEEE 12207 Software Life Cycle Processes: requirements of
processes.

CCSE
response

Modification made.

comment 4.16 – Replace “Quality work product attributes include usability,
reliability, safety, security, maintainability, flexibility, efficiency,
performance and availablility” with “software quality attributes into
six characteristics (functionality, reliability, usability, efficiency,
maintainability and portability)”

CCSE
response

Some modification made.
The new quality work product attributes now include all six of the
software quality attributes listed above.

comment 4.16 - Replace “tools, and technology” with “tools” since tools are
implemented in technology

CCSE
response

Noted.
The terms in this list should be definable by students.

comment 4.16 – Clarify “The dimensions of quality engineering”.
CCSE
response

Noted.
This phrase is meant to represent the many facets of quality
engineering, not the individual quality attributes.

comment 4.16 – Clarify “Baldridge Award criteria for software engineering”
CCSE
response

Modification made.
This topic has been changed to “Baldrige Award criteria as applied
to software engineering?

comment 4.16 - Add "Root cause analysis and defect prevention" to
QUA.pca

CCSE
response

For the record, this topic appears as part of product assurance.
While it may be true that such analysis can be applied as part of
process assurance as well, this would not be a topic that is
pertinent to an undergraduate student.

comment 4.16 – Add “Quality process metrics and measurement” to
QUA.pca

CCSE
response

Noted.
Again, this is not a topic that is pertinent to an undergraduate
student.

reviewer 2000436873 - Michael Wing
comment 1.2.1 Change “Because computer science provides some of the

scientific . . .” to “Because computer science and information
science provide the scientific . . .” What other sciences provide any
real foundation for computer science – Physics, Zoology The only
science worth mentioning (other than computer science) is
information science. Other sciences only rear their heads in
software applications that support those sciences.

CCSE
response

We believe that adding “information science” will only make the
confusion about the differences in CS, SE, CE, IS and IT more
pronounced.

comment 2.1 [2] Change “value of good engineering design” to “value
of good software engineering design” The relationship between
software and traditional engineering is still debated, and the
principles of engineering can only be applied metaphorically

CCSE
response

Agree – recommendation incorporated

comment 2.1 [3] Change “Also, because of the special professional
responsibilities of engineers to the public” to “Also, because of the
professional responsibilities of software engineers to the public”
Many professions (doctors, police, lawyers, engineers, educators)
have responsibilities to the public. Engineers and software
engineers are not special in this sense. The only thing special is
our area of expertise, but every profession has its own special
area of expertise. Also, software engineers are not
necessarily engineers.

CCSE
response

Agree – recommendation incorporated

comment 2.1 [4] Change “changes in technology” to “change in
technologies, practices, and applications” Many elements of a
profession are not technological. For example, inspections and
pair programming are practices, which are independent of
technology. Also, application domains (such as web-commerce)
can demand entirely new solutions (such as very rapid response)
that would otherwise be ignored by traditional technologies and
practices. The WWW and E-commerce have forced many
practitioners to think and work in new ways. A related change in a
later sentence in the paragraph is that institutions must remain
abreast of “technologies,
practices, and applications.”

CCSE
response

Agree – recommendation incorporated.

comment 2.1 [4] Rethink “subject to the constraint of available resources”
This clause is trouble. All people and all institutions are subject
to the constraints of available resources. In my experience, most
problems in software engineering are due to “constraints of
available resources.”
If educational institutions can excuse anything with “subject to the
constraints of available resources”, then Microsoft and the authors
of every other buggy, cumbersome application can also excuse
their bugs for the same reason. This proposal only uses “subject
to the constraint of available resources” in the context of
educators, which is a flagrant double standard.

CCSE
response

We believe that since CS and SE are such dynamic fields,
resources are a major constraint on staying current (more so than
in many other disciplines)

comment 2.1 [10] Clarify the meaning of “professional” in this paragraph.
Does the adjective mean “as practiced for pay” or “has a license”

CCSE
response

The meaning of “professional” is possibly both of these, but much
more. The emphasis in this principle is on “profession practice”
which is elaborated on in a number of places throughout the
volume (e.g., 3.2.1, 3.3, 4.10, Appendix A (NT291))

comment 2.1 [12] Add a principle that “CCSE and educators who teach
CCSE must not harm their own students and their abilities to
compete in the world economy.” It would be nice for educators to
actively foster their own students ability to compete in the world
economy (perhaps even to survive the current outsourcing and
other economic forces that are destroying their jobs). This is too
much to expect, because educators by themselves cannot change
the world economy.

CCSE
response

Noted.

comment Alas, I cannot think of a reasonable principle that uses “foster” in
a positive way. Fostering is hard for educators, because in the
U.S. an engineering degree is supposed to be more general than
a technical or vocational degree, which makes goals murky. It is
worth noting that in paragraph 2.3 [7], the core should have broad
acceptance by the software engineering education community%94
rather than by %93the community of practitioners%94 or %93the
whole software engineering community.%94 The (2.3 [7]) principle
seems necessary because most professors spend their
lives at universities and not on real commercial projects. But, the
(2.3 [7]) principle also allows educators to ignore the welfare of
practitioners, specifically, their own students a few years later.
For example, criticizing practitioners today will harm the students
who will become practitioners in a few years. Today%92s students

are subject to the harm to reputations wrought on previous
generations of practitioners by previous generations of academics.

CCSE
response

Unfortunately, it would be an unrealistic for the CCSE to get broad
acceptance by practitioners, much less the SE education
community. However, principle [9] calls for a “broadly based”
development of the CCSE, including “industry, commerce and
government”. We have worked hard to achieve [9] and believe we
have had some success in this area.

comment 2.2 [4] Change “engineering” to “software engineering” to avoid
bias.

CCSE
response

Agree – recommendation incorporated.

comment 3.1 The effects of software engineering described are very murky.
There are hundreds of billions of dollars being spent in the
U.S. yearly on software development. Software affects the lives of
almost everyone in western economies. Whenever one goes to
the bank or uses a credit card, or an ATM, or a car, or television,
one uses software. This discussion should be much more
accurate.
3.1 According to the 2000 U.S. census, there are 640,000
software engineers in the U.S. and another 530,000 programmers.
I do not know what the numbers are for other countries, but there
are probably more than 2,000,000 software engineers worldwide.

CCSE
response

Agree – recommendation incorporated.

comment 3.1 There is a huge self-definition problem with this section.
The authors chose definitions that emphasize ties to traditional
engineering, chose to define it in terms of success, and in terms of
the Waterfall model.

Traditional engineering: There are many places such as
http://www.wikipedia.org/wiki/Software_engineering
that define software engineering in terms of technologies,
practices, applications, and community, without reference to
traditional engineering.
There are enormous differences between software engineering
and traditional engineering. I believe that most software engineers
use traditional engineering as a metaphor, for the kinds of success
that we want. However, it is not yet clear what the relationship
between software engineering and traditional engineering is.
Success: Defining any profession in terms of success or failure is
problematic.
Waterfall Bias: The final paragraph boils software engineering
down to the Waterfall model.
Side note: The definitions primarily come from IEEE and SEI
sources, which appears biased away from the ACM and other

practitioners.
CCSE
response

There has been much debate over this issue and there have been
some changes in Chapter 3 that partially address these concerns.
Note: The listing of software development activities such as
“analysis and evaluation, specification, design, implementation
and evolution” should not be interpreted as adopted or advocating
a particular software development model.

comment 3.2 This entire section argues that software engineering
is a branch of engineering, without acknowledging other
possibilities. It also uses the word “professional” ambiguously.

CCSE
response

The term “professional” is addressed in other sections and
chapters in greater detail.

comment 3.2.1 The comparison in this section applies to nearly every
single profession in existence, if you remove the word “engineer.”

CCSE
response

Although the characteristics might apply to other professions,
taken together, we believe they add value to the document. The
characteristics have been edited to a more manageable number.

comment 3.2.1 [1] Nearly all human activities are performed in and around
buildings. Civil engineers have millennia of head start over
software engineering. Most people in 1st world economies use
motorize vehicles. Automotive engineers have over 50 years of
head start. The second sentence is simply not true.

CCSE
response

Characteristic [1] has been eliminated.

comment 3.2.2 The first half of the second paragraph concerns “finding
technical solutions to specific practical issues” which also applies
to every profession. Judges apply the law to determine whether
this person goes to jail or pays a fine. Artists solve technical
problems. One “professional” artist from Santa Fe told me that he
was trying to use less orange in his sunset landscapes, which is a
specific technical problem.

The second half of the second paragraph advocates the Waterfall
model. The “step-wise approach . . .” is simply the Waterfall by
another name. Yet, Royce actually advocated an iterative
approach to problem solving in the referenced paper. There are
many other approaches to engineering design: Spiral, Agile, and
Lean being prominent today.

This section could either find true and meaningful comparisons to
engineering design, or be rewritten to encompass the breadth of
software engineering design. The model describes deployment
and operations, which is more of an IT issue. Perhaps this section
should explain the relationship between software engineering and
IT. (3.2.2)

CCSE This section has been rewritten. Some of the issues raised by the

response reviewer have been addressed.
comment 3.3.3 Replace the list “(technical communications, ethics,

engineering economics, etc.)” with “(technical communications,
ethics, economics, etc.)” Software engineering may need
economic principles that are not currently accepted as
“engineering economics,” such as Agile and Lean processes. The
relative cost of engineering design to production, is very different
between software and traditional engineering.
The original quote suggests that software engineers will find what
they need in existing engineering economics text books and
courses. But, there is ample evidence that software engineers
need a different body of economic knowledge. Or else Boehm
would have simply titled his famous book “More Engineering
Economics.”

Clarify the word ”professional” in the second paragraph. Does this
refer to work in industry, or work with a license.

CCSE
response

We believe that the term “engineering economics” is appropriate
and certainly would and should include the study of SE
economics. The second sentence in the paragraph elaborates on
the use of the term “professional” in this context.

comment 3.4 This section primarily discusses the SEI, CSEET, WGSEET,
and so on. I know that many individual educators have worked
over the past 2 decades at UNM in Albuquerque, thinking about,
teaching, and refining software engineering courses. I am
personally aware of large efforts by Bruce Wampler and Jeff P.
Van Dyke at UNM who taught many students. I have good reason
to suspect that thousands of educators around the world have
independently struggled to define what software engineering is
and how it should be taught. I believe that these individual
efforts by thousands of educators drove all progress in software
engineering education. Without these enormous efforts, the
current CCSE draft would not be possible.

The conferences listed in this section were places where hard-
working educators presented their triumphs and failures. The
current paragraphs suggest that the SEI and other burocracies are
taking credit for everyone else’s hard work. There have been
many gatherings over the past decades about software
engineering education at ICSE and elsewhere. These paragraphs
are an opportunity to recognize the pioneering (and mostly
thankless) work by these hardworking individuals. Instead, it
sounds like political greed by non-participants (mostly the SEI
does other things than education).

This section could either be expanded to encompass the full

community of SE educators and the full history of SE education, or
it could be moved to an appendix.

CCSE
response

Noted.

comment 3.5 The final sentence of the first paragraph is self-contradictory.
When a field is “new and dynamic” then keeping the
documentation or BOK up-to-date is difficult or impossible, without
an enormous effort. When a field is “new and dynamic,” rigid
bodies of knowledge should be viewed with great suspicion. When
things change rapidly, then the things that one clings to must be
small and very true, or one risks getting out of date. The BOKs
from all fields should be used carefully.

CCSE
response

Noted.

comment 4.1 References to other work should be appropriate. SWEBOK
is open to everyone and it is fair to relate it to this proposal. The
CSDP is specific to the IEEE. It is appropriate that the IEEE
should advocate the CSDP. However, I am a member of the ACM,
and I do not want this proposal to imply that I should have joined
the IEEE, or that the CSDP is ideal for me or anyone who is not a
member of the IEEE. 20 years ago, the ACM had its own
certification program that was eventually ignored to death. The
CSDP has only 300 people who have passed (by August 2003). At
this rate, fewer than 6000 people will pass the exam over the next
20 years. Unless there is a growth pattern that I do not know
about, the CDSP is headed for the same fate. This CCSE
curriculum proposal should not be limited by a potentially-doomed
test.

CCSE
Response

The CSDP material was simply referenced as one source. The
CCSE effort is not focused on or “limited by” the CSDP.

comment 4.8 Make the Formal construction methods section (CMP.fm.*)
optional. This material seems appropriate for an optional upper
level or graduate class. These techniques are still mostly in the
arena of research, and I have never met a practitioner who
actually claimed to use them.

CCSE
Response

Noted.

comment 4.9 Remove the engineering bias in this section. Make the title
%93Mathematical and Software Engineering Fundamentals.%94
Change the first sentence to %93The mathematical and software
engineering fundamentals%94 Change FND.ef to
%93Software engineering foundations.%94 Explain
topic FND.ef.6 in terms of the metaphor to engineering. Change
FND.ec to %93Software engineering economic.%94 The empirical
methods used in software engineering and the economics of
software engineering may be very different from traditional

engineering. Engineering is certainly a metaphor worth
exploring. However, claiming that software empirical methods and
economics come from traditional engineering implies that students
can already learn everything they need to learn from existing
engineering textbooks and courses.

CCSE
Response

This section was generated by the experts who actively work in
this field and added to the SEEK where they felt it belonged.

comment 4.10 Make PRF.pr.1 optional. This material may be required
in states and countries, where state licenses exist (like Texas,
Canada). However, it is basically meaningless in other states, like
California, except for individuals who want to emulate the licensing
models in Texas and California. There are many other models of
professionalism. I believe that this topic should be very sensitive to
everyone outside of Texas and Canada.

CCSE
Response

Students should be aware of the current issues facing practicing
software engineers.

comment 4.11 Make MAA.md.3 optional. Mathematical models and
specification languages remain research topics.
Add MAA.md.11 %93Coping with change%94 a required topic.
Every project I have ever seen has been affected by change. Skills
to cope with change are vital.
Make MAA.rsd.3 optional. Specification languages remain
research topics. It is unclear when they will become useful enough
to be widely adopted.

CCSE
Response

Noted.

comment 4.15 Redefine PRO.imp.5 to emphasize team collaboration, rather
than team software process. XP and other Agile processes
emphasize teamwork, without the measurement and burocracy of
the TSP. The TSP is only one possible set of teamwork practices.

CCSE
Response

"Team software process" was not meant specifically to be TSP,
but to avoid confusion it has been changed to "Team process".

comment 4.16 Make QUA.std and QUA.pro more balanced with actual
experience. Clarify that while some companies that adopt these
standards have improved, other companies have had seen no
improvement. Quality standards and practices are not silver
bullets. The %93Lean Software%94 movement defines
quality in a similar way to Agile processes. XP has had similar
results with ISO-9000 in terms of quality, and should be treated as
a quality-oriented process. Also, recognize that the quality
standards can have severe negative side effects. Quality
processes been used as tools for deskilling jobs, and for exporting
jobs from western economies to the developing world.

CCSE
Response

These units are here to introduce standards and process only. The
amount of actual practice and experience the undergraduate
student will have with quality standards and practices will be quite

limited.
comment 5.1 Remove %93or by being certified in some way (such as the

IEEE CSDP certification, or other such designation offered by a
professional engineering society).%94 This is a shameless plug
for the CSDP. I don%92t know of any other certification programs
that are meaningful to this CCSE.

Change %93convey to students the engineering-nature%94 to
express %93practical,%94 %93real-world,%94 or %93user-
oriented%94 nature. The original wording assumes that civil
engineers would understand software better than computer
scientists, which I doubt.

CCSE
Response

The CSDP was included as an “example”, not as the only way to
demonstrate knowledge.

comment 5.3 Guideline 7 Remove the engineering bias. Many people
disagree that %93software engineering should take its place
alongside older branches of engineering.%94 Many people
disagree that software engineers should %93embrace the
characteristics of engineering.%94 Many disagree that
%93students must develop an sense of the engineering
ethos.%94

One alternative view is that software engineering is as big and
diverse as all of traditional engineering. Another alternative view is
that software engineering practices differ substantially from
traditional engineering, and that software engineers must find their
own way in the world, which is related to, but different from
traditional engineering.
This guideline should recognize the diversity of opinions about the
relationship between software engineering and traditional
engineering.

CCSE
Response

Guideline 7 has been adjusted, by adding an extra paragraph.
This may not satisfy the reviewer, but should clarify that CCSE
does not require adherence to a particular political position.

comment 5.3 Guideline 11 Remove the phrase containing %93visual and
formal specification languages.%94 These languages remain
research tools. It is not clear when they will be widely used.

CCSE
Response

Change made, but left “specification languages”.

comment 5.3 Guideline 12 Clarify the %93older tools can be simpler%94
sentence. This logic behind this sentence is muddled. There are
many reasons to use older tools, such as compatibility, working on
embedded systems that have rudimentary tool support, and
maintaining legacy code. Perhaps, the paragraph should argue,
%93students should use a wide variety of tools,%94 to better
understand when one tool or another would be appropriate, and

learn how to cope with older and simpler tools.
CCSE
Response

Agree – recommendation incorporated.

comment 5.3 Guideline 13 Change %93grounded in sound research and
mathematical theory%94 to %93grounded in mathematical
theory.%94 The only part of this CCSE proposal that is grounded
only in research is the work on formal methods, which has never
been widely accepted in practice. Had the guideline required either
mathematical theory or practice, then formal methods would be
acknowledged as ongoing research material and would be treated
as such.

CCSE
Response

Other parts of CCSE are also grounded in research, including
much work on testing, on user interface design, etc. We feel that
the principle is sound.

comment 5.4 Guideline 17 Change %93They should also be exposed to
good process and quality so they can experience for themselves
the effect of improvement.%94 This is muddled. Students who are
exposed to good process and quality may experience pride in their
work and learn to appreciate good work.

CCSE
Response

Agree – recommendation incorporated.

comment 6.2 Remove the paragraph starting %93Computer science
courses in many institutions are taught.%94 This is condescending
toward all computer science departments. There may be bad CS
teachers, but there will likely be just as many bad SE teachers.
Most CS educators I know truly aspire to create better code, but
through CS means (which is different than but not worse) than SE
means. I don%92t believe that Dijkstra or Knuth would ever
tolerate known bad practices. This paragraph is very wrong.

CCSE
Response

A valid comment. This paragraph has been rewritten to account for
the points raised.

comment 6.2.1 Change %93(2) the engineering perspective%94 to %93(2)
the software engineering perspective.%94 The previous working
implies that software engineering is a branch of traditional
engineering.

CCSE
Response

Agree - the wording was adjusted so that the comment about
engineering perspective applies to SE101/102 only.

comment 6.3.2 SE312-lld Remove %93including formal approaches%94
That is what compilers are for. Formal approaches remain
research tools.

CCSE
Response

This path through the program is more suitable for those who
believe that software engineers should be taught formal
approaches, and that they are more than research tools. Some
universities want this, and many believe this is entirely
appropriate.

comment 6.3.2 SE313-fm Make this class an optional topics course for

seniors and graduate students. This topic remains a research
topic.

CCSE
Response

Others argue the opposite. We believe we have struck a balance.
In particular, the course sequences can allow for considerable
flexibility in the amount of coverage of formal methods.

comment 6.4.1 NT271-eco Change the name to %93Software Engineering
Economics.%94 The relationship between software engineering
and traditional engineering remains fuzzy.

NT291-eth Remove this course, or make it optional. I looked
around on the web, and I did not find any engineering departments
that have a %93professionalism%94 course. On the whole this
course is murky. It appears to be one more opportunity to
brainwash students. This course may be appropriate in those
jurisdictions where software engineering is licensed, such as
Canada and Texas, but it is meaningless or condescending
elsewhere.

CCSE
Response

Noted.
NT291-eth covers a lot of material that people feel is quite
important.

comment 6.4.2 The discussion about the role of calculus is telling.
Students take only a limited number of courses. Devoting effort to
calculus means that they cannot talk other courses. It would be
nice for every student to take 20 years of college, but that is
unrealistic. This curriculum must define the priorities for software
engineering students. The relative unimportance of calculus
distinguishes software engineering from all other branches of
engineering.

The sentence starting %93Other mathematics commonly%94
might point out that these courses also support numerical analysis
and modeling for the sciences (like physics).

The sentence %93Taking some science and engineering courses
will%94 is also telling. This also has to do with priorities for all
software engineering students. If all software engineers would
write programs for scientific and engineering modeling, then
requiring science and engineering courses would make sense.
Instead, because of the limited hours in a 4 year degree, students
should take classes relevant to the domains they will work in. This
difference in priorities also separates software engineering from
traditional engineering.

CCSE
Response

The Calculus is not a required SEEK topic, but as discussed in
6.4.2, there are some programs that will want to require it.

reviewer 4614071 – Don Bagert

comment 4.14 – Too little coverage of evolution; either increase the hours or
remove this KA and distribute the topics within other Kas.

CCSE
response

Noted.
Evolution is a difficult topic (as well as process) to teach at the
undergraduate level; particularly since these students have had so
little experience. It is for this reasons that you give as to the
importance/significance of evolution that the we strongly believe
that EVO should remain as a KA. The number of hours listed, as
well as the topics covered, was suggested by a renowned expert
in software maintenance and we support his recommendation.

comment 6.3 Add a third core software engineering package which does
not include a separate HCI course. One model would be based on
the six course sequence in the 1989 SEI graduate curriculum
model, which was adapted by Rose-Hulman for their
undergraduate core, and subsequently mapped to SEEK by Mark
Ardis (the co-creator of the SEI model). Mark will be presenting
these results as part of an FIE 2003 panel.

CCSE
Response

It might be possible to distribute the HCI material among other
courses, but this would result in somewhat unfocused mixtures.
Given the recognition (perhaps late) of the high importance of user
interfaces, a required course seems appropriate. The SEI
curriculum dates back to 1989. That is a long time ago; we can
make progress and realize that improvements can be made.

comment 6.3.1 I suggest that a class called "Software Design and Evolution"
is ill-matched. Either evolution issues should be discussed
throughout the core sequence (which would mean that the title of
the course should be changed) or evolution should be coupled
with construction.

CCSE
Response

The name has been changed to Software Design and
Architecture. However, the material has not been moved to the
construction section since it is not clear why this would be better.
The concepts of evolution apply at all scales, but become most
obvious when designing architectures (which must permit
evolution). It is true that maintenance tends to be done mostly at
the low (construction) level, but the actual material that needs
“teaching” is mostly higher level in nature.

reviewer 4714197 – Volodymyr Pavlov
comment All references to CMM/CMMI should also reference the

Organizational Project Management Maturity Model (OPM3) since
this will be the “standard” by the time that CCSE is released

CCSE
response

At this time, the only reference to CMMI is in software quality
processes. It is not clear how this topic relates to the
Organizational Project Management Maturity Model. Once this
indeed becomes the standard and it is clear where such a
reference belongs, future releases of the CCSE will contain the

reference.

reviewer 20004816967 - Wes Doonan
comment A comprehensive treatment of the subject matter; clearly

much good work has gone into achieving this level of maturity in
the document. Incorporation of practical learning with theoretical
background highly appreciated. Focus on software construction as
an engineering discipline is appreciated (and sorely needed).

A general bias towards the design and coding aspects of complex
software construction still permeates the document. Clearly some
effort has been made to encompass the other important areas of
the development process, this effort should be encouraged and
intensified.

CCSE
response

Noted.

comment 3.2.1 item 7 - This point could perhaps be expanded to also
recognize the generally immature nature of tools available to
software engineers, and the critical need for the design and
development of better tools for use in constructing complex
software systems.

CCSE
Response

The relationship between tools and an SE curriculum are
addressed in a later chapter.

comment 4.8 Add some discussion of resource limitations of programs,
consequences thereof. That is, memory size limitations, compute
cycle limits, the effect these limits have of design choices. Correct
program construction when faced with real-world limitations of
such resources; including limits on network bandwidth.

CCSE
Response

At one time, we had a separate topic in CMP on just such an issue
but it has been incorporated into DES under design tradeoffs.

comment 4.18 – I believe that the development of tools for furthering the
practice of software engineering itself is an area at least equally
important to other application areas explicitly identified (or alluded
to) in the document. I also think this area is woefully under-served,
and should be presented to undergraduates as an important area
for investigation and study.

CCSE
Response

The list of specialty areas is in no way meant to be exhaustive.

comment FND.mf.10 - Even a survey course in number theory would be of
real use, particularly in preparing students to appreciate the
concepts that underlie security architectures.

CCSE
Response

Noted.
It is true that this topic would be of great benefit to programs that
security. In particular, such a topic would be essential as part of a
SSA in secure systems (sec).

comment 5.2, item 5 - This point is quite important, and should be impressed
upon curriculum designers as such. Curriculum designers might
be encouraged to build tracks where students are organized to
work in teams on complex projects quite early in their academic
career, so that they are immediately exposed to both the human
and technical challenges involved in teamwork.

CCSE
Response

We have enhanced the text concerning this point.

comment 5.2 item 6 - I fundamentally agree that SE students should have
exposure to non-SE areas as part of the curriculum. However I am
biased against curricula that would create "software for telecom"
or "software for databases" or other such courses. As electives,
possibly, but not in core.

CCSE
Response

The guideline does not suggest these have to be core courses;
and there are no such core courses among the courses we
propose.

comment 5.2 item 14 - Project-based courses are a great idea, and should
include having the student serve in each of the many roles present
in software development teams -- not just as designers. Students
should serve as a verification engineer, a tools engineer, a project
manager, a requirements engineer, a systems engineer -- each of
these roles is typically present in a software project team, each
should be experienced.

CCSE
Response

Agree – recommendation incorporated.

comment 6.2 - The important point I think is not whether there are more CS
or SE courses early in the curriculum, but rather that the principles
of engineering as a problem solving activity (and hence inculcating
the analysis and design skills necessary to become proficient
problem solvers) be taught right at the beginning, so that other
foundation courses can be interpreted in the correct light (e.g. so
that data structures and algorithms are viewed as a means to an
end, tools for solving problems, not necessarily ends to
themselves).

CCSE
Response

The text has been adjusted to make this clearer.

comment 6.3.3 - Including a capstone project is a great idea. It would seem
wise however not to characterize it as a "significant design
experience" so much as a "significant development/delivery
experience". The former gives the traditional bias towards
creation/coding, possibly giving short shrift to the other equally
important aspects of the overall process (requirements,
management, quality, verification, metrics, feedback, etc).

CCSE
Response

Agree – recommendation incorporated.

comment 6.4.1 NTxx courses - Hooray these are terrific ideas, should

definitely be part of all SE curricula somewhere.
CCSE
Response

Noted.

comment 6.4.1 - Increasingly software engineers must be aware of the
mechanics of the sales and marketing process. What a customer
is, how they are motivated, how best to interact with them, etc.
Also how customer support works after the sale. Somehow
exposing students to material of this sort would be very beneficial,
again in inculcating the notion of software as a product, serving a
need and a user, solving a problem, all of which underpin software
engineering as Engineering rather than Science.

CCSE
Response

Adding a course in marketing is a good idea, but would probably
not be reasonable as a recommendation for every single program.
On the other hand, we are suggesting that course NT181 include
quite a bit of what you propose.

reviewer 20004922095 - Ivan Mistrik
comment Omission

Using Design Rules (Standards & Guidelines to direct design
activity)

CCSE
Response

This is included in “DES.con Design concepts” in the SEEK.

comment Omission
Software Engineering Life Cycle (distinct activities and
consequences for interactive system design)

CCSE
Response

This is included in “PRO.imp.2 Life cycle models”, in the SEEK.

comment Omission
Iterative Design & Prototyping (limited functionality simulations and
animations)

CCSE
Response

This is included in “DES.con Design concepts” and “DES.str
Design strategies”, in the SEEK.

comment Omission
Design Rationale (recording design knowledge process vs.
structure)

CCSE
Response

This is included in “DES.con Design concepts”, in the SEEK.

comment Omission
Usability Engineering (making usability measurements explicit as
requirements)

CCSE
Response

This is included in “MAA.af.3Analyzing quality (non-functional)
requirements” and “DES.con.6 Design for quality attributes” , in the
SEEK.

comment Note: The reviewer made a number of suggestions about changes
to the SEEK topics associated with SE courses, listed in Appendix
A.

CCSE
Response

These changes would first have to be done in SEEK. SEEK
coverage in the appendix is semi-automatically generated. Also,
material on “Learning Objectives” and “Additional considerations”
have been added.

reviewer 20005029840 - Pete Knoke
comment The organization of CCSE is excellent, and the content

is mainly very good. It was also interesting to read. I think the use
of color in some chapters helped with readability, and showed
patterns in what could be a useful way (but I'm still trying to figure
out the possible meaning of some of the patterns). What is there is
very comprehensive (i.e., Chapters 1-7, and Appendices A,B, and
C). Also, I think the Bibliography for Software Engineering
Education is quite good.

CCSE
response

Noted.

comment Note: The reviewer pointed out numerous errors in grammar and
style.

CCSE
Response

Errors corrected.

reviewer 200051157 - Michael Lutz
comment 4.15 Drop PRO.imp.4 and PRO.imp.5 from application (a) to

comprehension (c) in the Bloom level.
CCSE
Response

Agree – recommendation incorporated.

comment 4.18 SAS.sfy - formal methods and control systems are not
sufficient. Students need exposure to Failure Modes and Effects
Analysis and Fault Tree Analysis. Indeed, I'd weight these above
formal methods if push came to shove.

CCSE
Response

Agree – recommendation incorporated.

comment 6.3.2 - Reverse the prerequisite order for SE213 and SE 312.
CCSE
Response

This sequence was designed to allow for coverage of large-scale
architectures before coverage of lower-level design issues ... as in
a top-down approach. Some see this as appropriate. For those
who do not like it, then Core Software Engineerinng Pacakge I
would be better.

comment Appendix A - SE312 needs to have some coverage of refactoring.
SE312 shows low cohesion. It addresses issues ranging
from construction tactics through basic design up to and including
formal modeling.

CCSE
Response

We have added refactoring. We don not believe, however, that
including formal approaches is a problem; many people believe
that a certain amount of formality should be encouraged in each

design course ... and that such material should not be relegated
exclusively to a separate course. Note that this course is part of
pattern 2; curriculum designers who don't like this way of
packaging material can pick pattern 1.

comment Appendix A - SE313 is a pastiche of topics that do not, on the
whole, fit well together.

CCSE
Response

While some people would cover one or another of the areas in this
course in great depth, we have created a course that covers many
of the formal topics from SEEK in moderate depth. We believe that
such a course would expose students to the variety of types of
formalism.

reviewer 2000523841 - David Rine
comment The following historical background paragraph should be inserted

in section 3.4. Thank you.

In 1976 The IEEE Computer Society activated is Education Area,
under the supervision of Dr. David Rine, to undertake a first draft
development of a “Model Curriculum for A Masters Degree in
Software Engineering “.
The publication was co-edited by David Rine, Richard Fairley and
Anthony Wasserman. The Outcome of this Education Area work
was a publication MSE-78: Model Curriculum for a Masters
Degree in Software Engineering …

CCSE
response

Reference to this work has been included in Section 3.4.

reviewer 20005325573 - Bruce H. Barnes
comment I like the report very much. The group has made considerable

progress and I am looking forward to seeing the complete report. I
especially liked the way that they started with requirements, CCSE
Principles, and developed specifications, Curriculum Outcomes
and SE knowledge areas, before moving on to implementation.
This is a very logical and appropriate approach for a group of
software engineers.
The Pedagogical group should complete the specifications and
move into the design phase. I did not see that there are plans for
producing one or more sample curricula. This is imperative!
Computer Science is a well-established academic major. There
are hundreds of ongoing programs graduating a considerable
number of graduates. The broader community, i. e. faculty,
administrators, students, employers and parents, has a relatively
good vision of what such programs entail. This is not true for
Software Engineering where there are just a handful of
established programs. The report must not only be a set of

guidelines for a set of knowledgeable faculty to develop a software
engineering program or modify an existing one, it needs to be a
spokesperson for the discipline. It is necessary for faculty,
administrators and employers to be able to visualize a complete
program in an academic setting.

CCSE
Response

Detail has been added to the course specifications in Appendix A
(learning objectives, additional considerations). Also, additional
curriculum patterns have been added, which serve as “sample
curricula”.

comment Omission - There are two implied requirements, i.e. principles, that
should be included. These are 1) that the report is to be consistent
with accreditation guidelines and 2) be built upon the
recommendation in CC2001. These do not change anything, but
they give creditability to the report and answer a lot of questions
before they are asked.

CCSE
Response

1) Principle 3 in Section 2.1 includes that statement “ … it is
important that the curriculum guidance support and promote
effective external assessment and accreditation of software
engineering programs. Also, we have added a section “8.2
Assessment and Accreditation Issues” in a new Chapter 8:
Program Implementation and Assessment
2) The statement “The following list of principles were strongly
influenced by the principles set down in the CCCS volume”
precedes the principles in 2.1. In addition, in numerous places
throughout the CCSE volume reference is made to the influence of
the CCCS volume.

comment Omission - Computer and network security plays an essential role
in most commercial and military applications and deserves more
than one hour in the core requirements. The topic depth in
security, as found in some of the specialties, should be included in
the core.

CCSE
Response

While security issues have been increasing in importance, little is
found in current undergraduate curricula on it (which most likely
explains why little to no reference has been found in other KAs).
As the exposure to security issues increases in the classrooms, it
will also be found in more KAs.

